RESUMO
The solar light-responsive Fe-doped Co-based coordination polymer (Fe@Co-CP) photocatalyst was synthesized under mild conditions. [Co(4-padpe)(1,3-BDC)]n (Co-CP) was first constructed using mixed ligands through the hydrothermal method. Then, Fe was introduced into the Co-CP framework to achieve the enhanced photocatalytic activity. The optimal Fe@Co-CP-2 exhibited excellent catalytic degradation performance for norfloxacin and ciprofloxacin under sunlight irradiation without auxiliary oxidants, and the degradation rates were 91.25 and 92.66% in 120 min. These excellent photocatalytic properties were ascribed to the generation of the Fe-O bond, which not only enhanced the light absorption intensity but also accelerated the separation efficiency of electrons and holes, and hence significantly improved the photocatalytic property of the composites. Meanwhile, Fe@Co-CP-2 displayed excellent stability and reusability. In addition, the degradation pathways and intermediates of antibiotic molecules were effectively analyzed. The free radical scavenging experiment and ESR results confirmed that â¢OH, â¢O2-, and h+ active species were involved in the catalytic degradation reaction; the corresponding mechanisms were deeply investigated. This study provides a fresh approach for constructing Fe-doped Co-CP-based composite materials as photocatalysts for degradation of antibiotic contaminants.
Assuntos
Ciprofloxacina , Norfloxacino , Norfloxacino/química , Norfloxacino/efeitos da radiação , Antibacterianos/química , Luz , CatáliseRESUMO
The efficient heterogeneous photo-Fenton-like catalysts based on two secondary ligand-induced Cu(II) metal-organic frameworks (Cu-MOF-1 and Cu-MOF-2) were constructed for the first time and investigated for the degradation of multiple antibiotics. Herein, two novel Cu-MOFs were prepared using mixed ligands by a facile hydrothermal method. The one-dimensional (1D) nanotube-like structure could be obtained by using V-shaped, long and rigid 4,4'-bis(3-pyridylformamide)diphenylether (3-padpe) ligand in Cu-MOF-1, while polynuclear Cu cluster could be prepared more easily by using short and small isonicotinic acid (HIA) ligand in Cu-MOF-2. Their photocatalytic performances were measured by degradation of multiple antibiotics in Fenton-like system. Comparatively, Cu-MOF-2 exhibited superior photo-Fenton-like performance under visible light irradiation. The outstanding catalytic performance of Cu-MOF-2 was ascribed to the tetranuclear Cu cluster configuration and excellent ability of photoinduced charge transfer and hole separation thus improved the photo-Fenton activity. In addition, Cu-MOF-2 showed high photo-Fenton activity in wide pH working range 3-10 and maintained wonderful stability after five cyclic experiments. The degradation intermediates and pathways were deeply studied. The main active species h+, O2- and OH worked together in photo-Fenton-like system and possible degradation mechanism was proposed. This study provided a new approach to design the Cu-based MOFs Fenton-like catalysts.