Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 149: 109589, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685444

RESUMO

Members of the Signal Transducer and Activator of Transcription (STAT) family function pivotally as transcriptional activators integral to the modulation of inflammatory responses. The aquaculture of silver pomfret is frequently compromised by the imposition of exogenous stressors, which include thermal fluctuations, notably low-temperatures, diminished oxygen levels, and the onslaught of bacterial pathogens. Notwithstanding the critical impact of these stressors, the scientific literature presents a notable gap in our understanding of the STAT pathway's role in the silver pomfret's adaptive response mechanisms. To address this lacuna, we identified stat genes in the silver pomfret-denominated as Pastat1, Pastat2, Pastat3, Pastat4, and Pastat5-through a thorough and systematic bioinformatics analysis. Further scrutiny of the gene configurations and constituent motifs has elucidated that STAT proteins possess analogous structural frameworks and exhibit significant evolutionary preservation. Subsequently, the expression patterns of five stat genes were verified by RT-qPCR in twelve different tissues and four growth periods in healthy fish, showing that the expression of Pastat genes was temporally and spatially specific, with most of the stat genes expressed at higher levels in the spleen, following muscle, gill, and liver. Transcriptomic analysis of exposure to exogenous stressors, specifically formaldehyde and low-temperature conditions, elucidated that Pastat1 and Pastat2 genes exhibited a heightened sensitivity to these environmental challenges. RT-qPCR assays demonstrated a marked alteration in the expression profiles of jak1 and Pastat gene suites in PaS upon prolonged bacterial infection subsequent to these exogenous insults. Moreover, the gene expression of the downstream effectors involved in innate immunity and apoptosis displayed marked deviations. This study additionally elucidated the Pastat gene family's role in modulating the innate immune response and apoptotic regulation within the silver pomfret during exogenous stressors and subsequent pathogenic incursions.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Perciformes , Fatores de Transcrição STAT , Estresse Fisiológico , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Doenças dos Peixes/imunologia , Perciformes/imunologia , Perciformes/genética , Imunidade Inata/genética , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Regulação da Expressão Gênica/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica/veterinária , Filogenia , Alinhamento de Sequência/veterinária , Vibrioses/imunologia , Vibrioses/veterinária , Sequência de Aminoácidos
2.
J Chem Inf Model ; 64(12): 4863-4876, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38836743

RESUMO

With recent large-scale applications and validations, the relative binding free energy (RBFE) calculated using alchemical free energy methods has been proven to be an accurate measure to probe the binding of small-molecule drug candidates. On the other hand, given the flexibility of peptides, it is of great interest to find out whether sufficient sampling could be achieved within the typical time scale of such calculation, and a similar level of accuracy could be reached for peptide drugs. However, the systematic evaluation of such calculations on protein-peptide systems has been less reported. Most reported studies of peptides were restricted to a limited number of data points or lacking experimental support. To demonstrate the applicability of the alchemical free energy method for protein-peptide systems in a typical real-world drug discovery project, we report an application of the thermodynamic integration (TI) method to the RBFE calculation of ghrelin receptor and its peptide agonists. Along with the calculation, the synthesis and in vitro EC50 activity of relamorelin and 17 new peptide derivatives were also reported. A cost-effective criterion to determine the data collection time was proposed for peptides in the TI simulation. The average of three TI repeats yielded a mean absolute error of 0.98 kcal/mol and Pearson's correlation coefficient (R) of 0.77 against the experimental free energy derived from the in vitro EC50 activity, showing good repeatability of the proposed method and a slightly better agreement than the results obtained from the arbitrary time frames up to 20 ns. Although it is limited by having one target and a deduced binding pose, we hope that this study can add some insights into alchemical free energy calculation of protein-peptide systems, providing theoretical assistance to the development of peptide drugs.


Assuntos
Desenho de Fármacos , Peptídeos , Receptores de Grelina , Termodinâmica , Receptores de Grelina/agonistas , Receptores de Grelina/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Humanos , Ligação Proteica , Simulação de Dinâmica Molecular , Conformação Proteica
3.
Environ Sci Technol ; 58(17): 7600-7608, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38629313

RESUMO

Plant guttation is an important source of water/nutrients for many beneficial insects, while the presence of pesticides in guttation has been considered as a new exposure route for nontarget insects. This study aimed to elucidate how 15 diverse pesticides are translocated from growth media to guttation by maize plants through a hydroponic experiment. All pesticides were effectively translocated from the growth solution to maize guttation and reached a steady state within 5 days. The strong positive correlation (R2 = 0.43-0.84) between the concentrations of pesticides in guttation and in xylem sap demonstrated that xylem sap was a major source of pesticides in guttation. The relationship between the bioaccumulation of pesticides in guttation (BCFguttation) and the chemical Kow was split into two distinct patterns: for pesticides with log Kow > 3, we identified a good negative linear correlation between log BCFguttation and log Kow (R2 = 0.71); however, for pesticides with log Kow < 3, all data fall close to a horizontal line of BCFguttation ≅ 1, indicating that hydrophilic pesticides can easily pass through the plants from rhizosphere solution to leaf guttation and reach saturation status. Besides, after feeding with pesticide-contaminated guttation, the mortality of honeybees was significantly impacted, even at very low levels (e.g., ∑600 µg/L with a mortality of 93%). Our results provide essential information for predicting the contamination of plant guttation with pesticides and associated ecological risks.


Assuntos
Praguicidas , Folhas de Planta , Rizosfera , Zea mays , Água/química , Animais
4.
Environ Sci Technol ; 58(3): 1680-1689, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38173396

RESUMO

Pesticides are frequently sprayed in greenhouses to ensure crop yields, where airborne particulate matter (PM) may serve as a carrier in depositing and transporting pesticides. However, little is known about the occurrence and fate of PM-borne pesticides in greenhouses. Herein, we examined the distribution, dissipation, and transformation of six commonly used pesticides (imidacloprid, acetamiprid, prochloraz, triadimefon, hexaconazole, and tebuconazole) in greenhouse PM (PM1, PM2.5, and PM10) after application as well as the associated human exposure risks via inhalation. During 35 days of experiment, the six pesticides were detected in all PM samples, and exhibited size- and time-dependent distribution characteristics, with the majority of them (>64.6%) accumulated in PM1. About 1.0-16.4% of initially measured pesticides in PM remained after 35 days, and a total of 12 major transformation products were elucidated, with six of them newly identified. The inhalation of PM could be an important route of human exposure to pesticides in the greenhouse, where the estimated average daily human inhalation dose (ADDinh) of the six individual pesticides was 2.1-1.2 × 104 pg/kg day-1 after application (1-35 days). Our findings highlight the occurrence of pesticides/transformation products in greenhouse PM, and their potential inhalation risks should be further concerned.


Assuntos
Poluentes Atmosféricos , Praguicidas , Humanos , Material Particulado/análise , Poluentes Atmosféricos/análise , China
5.
Environ Sci Technol ; 58(2): 1211-1222, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38173352

RESUMO

Molybdenum disulfide (nano-MoS2) nanomaterials have shown great potential for biomedical and catalytic applications due to their unique enzyme-mimicking properties. However, their potential agricultural applications have been largely unexplored. A key factor prior to the application of nano-MoS2 in agriculture is understanding its behavior in a complex soil-plant system, particularly in terms of its transformation. Here, we investigate the distribution and transformation of two types of nano-MoS2 (MoS2 nanoparticles and MoS2 nanosheets) in a soil-soybean system through a combination of synchrotron radiation-based X-ray absorption near-edge spectroscopy (XANES) and single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS). We found that MoS2 nanoparticles (NPs) transform dynamically in soil and plant tissues, releasing molybdenum (Mo) and sulfur (S) that can be incorporated gradually into the key enzymes involved in nitrogen metabolism and the antioxidant system, while the rest remain intact and act as nanozymes. Notably, there is 247.9 mg/kg of organic Mo in the nodule, while there is only 49.9 mg/kg of MoS2 NPs. This study demonstrates that it is the transformation that leads to the multifunctionality of MoS2, which can improve the biological nitrogen fixation (BNF) and growth. Therefore, MoS2 NPs enable a 30% increase in yield compared to the traditional molybdenum fertilizer (Na2MoO4). Excessive transformation of MoS2 nanosheets (NS) leads to the overaccumulation of Mo and sulfate in the plant, which damages the nodule function and yield. The study highlights the importance of understanding the transformation of nanomaterials for agricultural applications in future studies.


Assuntos
Nanoestruturas , Solo , Solo/química , Glycine max , Molibdênio , Agricultura
6.
Int J Neurosci ; : 1-15, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738512

RESUMO

OBJECTIVE: Inflammatory pain, is caused by lesions or diseases of the somatosensory tissue, is a prevalent chronic condition that profoundly impacts the quality of life. However, clinical treatment for this type of pain remains limited. Traditionally, the stimulation of microglia and subsequent inflammatory reactions are considered crucial elements to promote the worsening of inflammatory pain. Recent research has shown the crucial importance of the cGAS-STING pathway in promoting inflammation. It is still uncertain if the cGAS-STING pathway plays the role in the fundamental cause of inflammatory pain. We aim to explore the treatment of inflammatory pain by interfering with cGAS-STING signaling pathway. METHODS: In this study, we established an inflammatory pain model by CFA into the plantar of mice. Activation of microglia, various inflammatory factors and cGAS-STING protein in the spinal dorsal horn were evaluated. Immunofluorescence staining was used to observe the cellular localization of cGAS and STING. The cGAS-STING pathway proteins expression and mRNA expression of indicated microglial M1/M2 phenotypic markers in the BV2 microglia were detected. STING inhibitor C-176 was intrathecal injected into mice with inflammatory pain, and the pain behavior and microglia were observed. RESULTS: This research showed that injecting CFA into the left hind paw of mice caused mechanical allodynia and increased inflammation in the spine. Our research results suggested that the cGAS-STING pathway had a function in the inflammation mediated by microglia in the spinal cord dorsal horn. Blocking the cGAS-STING pathway using STING antagonists (C-176) led to reduced release of inflammatory factors and prevented M1 polarization of BV2 microglia in a laboratory setting. Additionally, intrathecal administration of C-176 reduced the allodynia in CFA treated mice. CONCLUSION: Our results suggest that inhibiting microglial polarization through the cGAS-STING pathway represents a potential novel therapeutic strategy for inflammatory pain.

7.
Angew Chem Int Ed Engl ; 63(15): e202400308, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38299744

RESUMO

The construction of the SCF3-containing 1,1-diaryl tertiary carbon stereocenters with high enantioselectivities is reported via a nickel-catalyzed asymmetric C-C coupling strategy. This method demonstrates simple operations, mild conditions and excellent functional group tolerance, with newly designed SCF3-containing synthon, which can be easily obtained from commercially available benzyl bromide and trifluoromethylthio anion in a two-step manner. Further substrate exploration indicated that the reaction system could be extended to diverse perfluoroalkyl sulfide (SC2F5, SC3F7, SC4F9, SCF2CO2Et)-substituted 1,1-diaryl compounds with excellent enantioselectivities. The synthetic utility of this transformation was further demonstrated by convenient derivatization to optical SCF3-containing analogues of bioactive compounds without an apparent decrease in enantioselectivity.

8.
Opt Express ; 31(15): 24760-24767, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475295

RESUMO

Wavelength division multiplexing is a widely used monolithic device with modulating light sources at different wavelengths based on a designed configuration. In this paper, we report an in-chip demultiplexer with a simple design operating at 532/1064 nm in pure YAG crystal. The device is fabricated by femtosecond laser direct writing inside the transparent substrate with just a width of 36 µm. The compact structure is designed based on the principle of self-imaging, and the propagation features have been simulated by utilizing the beam propagation method. The performance of this wavelength demultiplexer has been investigated through an end-face coupling system, which proves the device can separate 532 nm and 1064 nm light into two discrete waveguides polarization-insensitively with an extinction ratio as high as 13 dB. These superior performances manifest this exquisite device can emerge into kinds of photonic applications in the future. Also, this work further proves that femtosecond laser direct writing technology has irreplaceable advantages in processing micro-nano devices in transparent materials for in-chip integration.

9.
Opt Lett ; 48(3): 787-790, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723589

RESUMO

In this Letter, we report a tailored 532/1064-nm demultiplexer based on a multimode interference (MMI) coupler with an efficiency of 100%. The device structure is designed according to the self-imaging principle, and the propagation and the wavelength division performance are simulated by the beam propagation method. The demultiplexer is fabricated in a y-cut LiNbO3 crystal by femtosecond laser direct writing (FLDW) combined with the ion implantation technique. The end-face coupling system is used to measure the near field intensity distribution, and the spectra collected from the output ports are obtained by spectrometers. The simulated and the experimental results indicate that the customized demultiplexer in the LiNbO3 crystal presents excellent wavelength division performance operating at 532 nm and 1064 nm. This work demonstrates the application potential of FLDW technology for developing miniaturized photonic components and provides a new strategy for fabricating high-efficiency integrated wavelength division devices on an optical monocrystalline platform.

10.
Fish Shellfish Immunol ; 141: 109071, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37703936

RESUMO

Toll-like receptors (TLRs) are vital pattern recognition receptors that play a critical role in the innate immune response against pathogenic attack. Among the bacteria commonly found in the culture process of silver pomfret, Photobacterium damselae subsp. Damselae (PDD, gram-negative) and Nocardia seriolae (NS, gram-positive), can cause large-scale mortality in this fish species. However, there is currently no research on the role of TLRs in mediating the immune response of silver pomfret to these two bacterial infections. Therefore, in this study, we identified nine PaTLRs family members, including several fish-specific TLRs (TLR14 and TLR21). Phylogenetic analysis revealed that these PaTLRs genes could be classified into five subfamilies, namely TLR1, TLR3, TLR5, TLR7, and TLR11, indicating their evolutionary conservation. To further explore the interactions of TLR genes with immune-related mediators, protein and protein interaction network (PPI) results were generated to explain the association of TLR genes with TNF receptor-associated factor 6 (TRAF6) and other relevant genes in the MyD88-dependent pathway and NF-κb signaling pathway. Subsequently, RT-qPCR was conducted to verify the expression patterns of the nine TLR genes in the gills, skin, kidney, liver, and spleen of healthy fish, with most of the TLRs showing high expression levels in the spleen. Following infection with PDD and NS, these PaTLRs exhibited different expression patterns in the spleen, with PaTLR2, PaTLR3, PaTLR5, PaTLR7, PaTLR9, and PaTLR14 being significantly up-regulated. Furthermore, when spleen cells were treated with bacterial compositions, the majority of PaTLRs expression was up-regulated in response to Lipopolysaccharide (LPS) and lipophosphorylcholic acid (LTA) treatment, except for PaTLR21. Finally, changes in the expression levels of TLR-interacting genes were also observed under the stimulation of bacteria and bacterial compositions. The results of this study provide a preliminary reference for further understanding the mechanism of the innate immune response of the TLR gene family in silver pomfret and offer theoretical support for addressing the disease problems encountered during large-scale fish breeding.


Assuntos
Doenças dos Peixes , Perciformes , Animais , Filogenia , Receptores Toll-Like , Photobacterium , Imunidade Inata/genética
11.
Environ Sci Technol ; 57(19): 7547-7558, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37134233

RESUMO

Nickel (Ni) is a trace element beneficial for plant growth and development and could improve crop yield by stimulating urea decomposition and nitrogen-fixing enzyme activity. A full life cycle study was conducted to compare the long-term effects of soil-applied NiO nanoparticles (n-NiO), NiO bulk (b-NiO), and NiSO4 at 10-200 mg kg-1 on plant growth and nutritional content of soybean. n-NiO at 50 mg kg-1 significantly promoted the seed yield by 39%. Only 50 mg kg-1 n-NiO promoted total fatty acid content and starch content by 28 and 19%, respectively. The increased yield and nutrition could be attributed to the regulatory effects of n-NiO, including photosynthesis, mineral homeostasis, phytohormone, and nitrogen metabolism. Furthermore, n-NiO maintained a Ni2+ supply for more extended periods than NiSO4, reducing potential phytotoxicity concerns. Single-particle inductively coupled plasma mass spectrometry (sp-ICP-MS) for the first time confirmed that the majority of the Ni in seeds is in ionic form, with only 28-34% as n-NiO. These findings deepen our understanding of the potential of nanoscale and non-nanoscale Ni to accumulate and translocate in soybean, as well as the long-term fate of these materials in agricultural soils as a strategy for nanoenabled agriculture.


Assuntos
Nanopartículas , Níquel , Níquel/química , Glycine max , Nitrogênio , Solo
12.
Molecules ; 28(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298949

RESUMO

Psoriasis is a chronic and multifactorial skin disease which is caused by inflammatory infiltrates, keratinocyte hyperproliferation, and accumulation of immune cells. As part of the Aconitum species, Benzoylaconitine (BAC) shows potential antiviral, anti-tumor, and anti-inflammatory effects. In this study, we investigated the effects and mechanisms of BAC on tumor necrosis factor-alpha (TNF-α)/LPS-induced HaCaT keratinocytes in a imiquimod(IMQ)-induced mice model. The results showed that BAC could relieve the symptoms of psoriasis by inhibiting cell proliferation, the release of inflammatory factors, and the accumulation of Th17 cells, while no obvious effect on cell viability and safety was observed both in vitro and in vivo. Additionally, BAC can markedly inhibit the protein and mRNA levels of inflammatory cytokines in TNF-α/LPS-induced HaCaT keratinocytes by inhibiting the phosphorylation of STAT3. In brief, our data indicated that BAC could alleviate the progression of psoriasis and may be a potential therapeutic agent for treating psoriasis in clinical practice.


Assuntos
Psoríase , Fator de Necrose Tumoral alfa , Animais , Camundongos , Fator de Necrose Tumoral alfa/metabolismo , Fosforilação , Lipopolissacarídeos/farmacologia , Queratinócitos , Psoríase/patologia , Imiquimode/efeitos adversos , Citocinas/metabolismo , Camundongos Endogâmicos BALB C , Proliferação de Células , Modelos Animais de Doenças , Pele
13.
Environ Sci Technol ; 56(13): 9346-9355, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35738923

RESUMO

Predicting plant uptake of pharmaceuticals from soils is very challenging because many pharmaceuticals are ionizable compounds, which experience highly variable sorption/desorption and transformation processes in soils. This study aimed to elucidate how the equilibrium between sorbed and dissolved phases influences radish uptake of 15 pharmaceuticals from three soils with different properties. After 30 days of uptake, the accumulation of acetaminophen, carbamazepine, lamotrigine, carbadox, trimethoprim, and triclosan in radish ranked as Riddles > Capac > Spinks soil. In contrast, radish accumulation of caffeine, lincomycin, monensin, tylosin, sulfadiazine, and sulfamethoxazole exhibited the opposite order of Riddles < Capac < Spinks soil. Oxytetracycline and estrone demonstrated similar accumulation in radish grown in the three soils. Accumulation of pharmaceuticals in radish demonstrated no apparent relation with their concentration in soils. However, we identified strong positive correlation between pharmaceutical accumulation in radish and their corresponding concentration in soil pore water. These results reveal that pharmaceutical in soil pore water is the dominant fraction bioavailable to plant uptake. Relatively constant root concentration factors (RCFs) on the basis of pharmaceutical concentration in soil pore water, compared to the highly variable RCFs derived from soils, suggest that pore water-based RCF is superior for describing pharmaceutical accumulation in plants grown in soils. We recommend that pharmaceuticals in soil pore water should be evaluated and included in modeling their uptake by plants.


Assuntos
Raphanus , Poluentes do Solo , Preparações Farmacêuticas , Plantas , Solo , Poluentes do Solo/análise , Água
14.
Environ Sci Technol ; 55(24): 16358-16368, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34859664

RESUMO

Root concentration factor (RCF) is an important characterization parameter to describe accumulation of organic contaminants in plants from soils in life cycle impact assessment (LCIA) and phytoremediation potential assessment. However, building robust predictive models remains challenging due to the complex interactions among chemical-soil-plant root systems. Here we developed end-to-end machine learning models to devolve the complex molecular structure relationship with RCF by training on a unified RCF data set with 341 data points covering 72 chemicals. We demonstrate the efficacy of the proposed gradient boosting regression tree (GBRT) model based on the extended connectivity fingerprints (ECFP) by predicting RCF values and achieved prediction performance with R-squared of 0.77 and mean absolute error (MAE) of 0.22 using 5-fold cross validation. In addition, our results reveal nonlinear relationships among properties of chemical, soil, and plant. Further in-depth analyses identify the key chemical topological substructures (e.g., -O, -Cl, aromatic rings and large conjugated π systems) related to RCF. Stemming from its simplicity and universality, the GBRT-ECFP model provides a valuable tool for LCIA and other environmental assessments to better characterize chemical risks to human health and ecosystems.


Assuntos
Ecossistema , Solo , Bioacumulação , Humanos , Aprendizado de Máquina , Estrutura Molecular , Raízes de Plantas
15.
Arch Toxicol ; 95(12): 3777-3786, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34635929

RESUMO

Thifluzamide is widely used fungicide and frequently detected in aquatic system. In this study, the toxicity of fungicide thifluzamide to non-targeted aquatic organisms was investigated for neuroendocrine disruption potentials. Here, zebrafish embryos were exposed to a series of concentrations of thifluzamide for 6 days. The results showed that both the development of embryos/larvae and the behavior of hatched larvae were significantly affected by thifluzamide. Importantly, the decreased activity of acetylcholinesterase (AchE) and the increased contents of neurotransmitters such as serotonin (5-HT) and norepinephrine (NE), along with transcriptional changes of nervous system related genes were observed following 4 days exposure to thifluzamide. Besides, the decreased contents of triiodothyronine (T3) and thyroxine (T4) in whole body, as well as significant expression alteration in hypothalamic-pituitary-thyroid (HPT) axis associated genes were discovered in zebrafish embryos after 4 days of exposure to thifluzamide. Our results clearly demonstrated that zebrafish embryos exposed to thifluzamide could disrupt neuroendocrine, compromise behavior and induce developmental abnormality, suggesting impact of this fungicide on developmental programming in zebrafish.


Assuntos
Anilidas/toxicidade , Disruptores Endócrinos/toxicidade , Fungicidas Industriais/toxicidade , Tiazóis/toxicidade , Acetilcolinesterase/metabolismo , Anilidas/administração & dosagem , Animais , Relação Dose-Resposta a Droga , Embrião não Mamífero/efeitos dos fármacos , Disruptores Endócrinos/administração & dosagem , Fungicidas Industriais/administração & dosagem , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Larva/efeitos dos fármacos , Norepinefrina/metabolismo , Serotonina/metabolismo , Tiazóis/administração & dosagem , Hormônios Tireóideos/metabolismo , Peixe-Zebra
16.
J Am Chem Soc ; 142(21): 9604-9611, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32391693

RESUMO

A nickel-catalyzed, enantioselective, three-component fluoroalkylarylation of unactivated alkenes with aryl halides and perfluoroalkyl iodides has been described. This cross-electrophile coupling protocol utilizes a chiral nickel/BiOx system as well as a pendant chelating group to facilitate the challenging three-component, asymmetric difunctionalization of unactivated alkenes, providing direct access to valuable chiral ß-fluoroalkyl arylalkanes with high efficiency and excellent enantioselectivity. The mild conditions allow for a broad substrate scope as well as good functional group toleration.

17.
Biol Pharm Bull ; 43(2): 334-339, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31735734

RESUMO

Benzoylaconitine (BAC), the main hydrolysate of aconitine, is a lower toxic monoester type alkaloid considered as the pharmacodynamic constituent in Aconitum species. In this study, the effects and mechanisms of BAC on production of inflammatory cytokines interleukin (IL)-6 and IL-8 were investigated in IL-1ß-stimulated human synovial SW982 cells. The SW982 cells were incubated with BAC (0, 5 and 10 µM) before stimulating with IL-1ß (10 ng/mL). The results revealed that BAC suppressed gene and protein expression of IL-6 and IL-8 induced by IL-1ß. BAC decreased activation of mitogen-activated protein kinase (MAPK) and phosphorylation of Akt. BAC also inhibited degradation of inhibitor of kappaB (IκB)-α, phosphorylation and nuclear transposition of p65 protein. The results demonstrate that BAC exerts an anti-inflammatory effect dependent on MAPK, Akt and nuclear factor-κB (NF-κB) pathways in human synovial cells stimulated with IL-1ß, suggesting that BAC may be exploited as a potential therapeutic agent for rheumatoid arthritis (RA) treatment.


Assuntos
Aconitina/análogos & derivados , Interleucina-1beta , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Aconitina/química , Aconitina/farmacologia , Artrite Reumatoide/metabolismo , Linhagem Celular , Sobrevivência Celular , Humanos , Interleucina-1beta/metabolismo , Fosforilação , Sarcoma Sinovial , Transdução de Sinais , eIF-2 Quinase/metabolismo
18.
J Cell Mol Med ; 23(10): 7010-7020, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31436914

RESUMO

Mild hypothermia and its key product, cold-inducible protein RBM3, possess robust neuroprotective effects against various neurotoxins. However, we previously showed that mild hypothermia fails to attenuate the neurotoxicity from MPP+ , one of typical neurotoxins related to the increasing risk of Parkinson disease (PD). To better understand the role of mild hypothermia and RBM3 in PD progression, another known PD-related neurotoxin, rotenone (ROT) was utilized in this study. Using immunoblotting, cell viability assays and TUNEL staining, we revealed that mild hypothermia (32°C) significantly reduced the apoptosis induced by ROT in human neuroblastoma SH-SY5Y cells, when compared to normothermia (37°C). Meanwhile, the overexpression of RBM3 in SH-SY5Y cells mimicked the neuroprotective effects of mild hypothermia on ROT-induced cytotoxicity. Upon ROT stimulation, MAPK signalling like p38, JNK and ERK, and AMPK and GSK-3ß signalling were activated. When RBM3 was overexpressed, only the activation of p38, JNK and ERK signalling was inhibited, leaving AMPK and GSK-3ß signalling unaffected. Similarly, mild hypothermia also inhibited the activation of MAPKs induced by ROT. Lastly, it was demonstrated that the MAPK (especially p38 and ERK) inhibition by their individual inhibitors significantly decreased the neurotoxicity of ROT in SH-SY5Y cells. In conclusion, these data demonstrate that RBM3 mediates mild hypothermia-related neuroprotection against ROT by inhibiting the MAPK signalling of p38, JNK and ERK.


Assuntos
Temperatura Baixa , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Neurotoxinas/toxicidade , Proteínas de Ligação a RNA/metabolismo , Rotenona/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Citoproteção/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Hipotermia Induzida
19.
Tumour Biol ; 37(3): 3939-47, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26482612

RESUMO

Patients with cervical cancer show minimal clinical response to the tyrosine kinase inhibitor gefitinib, which targets the epidermal growth factor receptor (EGFR). The molecular mechanisms underlying sensitivity to gefitinib are unknown. The purpose of this study was to investigate the possible mechanism by which microRNA-221 (miR-221) affects sensitivity to gefitinib. We showed that miR-221 expression was significantly increased in cervical cancer tissues compared with adjacent normal tissues. Upregulation of miR-221 expression in cervical cancer cells decreased PTEN expression levels, resulting in increased pAkt and BCL-2 expression. Importantly, gefitinib sensitivity was decreased by the upregulation of miR-221, which was blocked by pcDNA-PTEN co-transfection or by the phosphatidylinositol-3 kinase (PI3K) inhibitor LY294002. These data suggest that miR-221 can reduce the sensitivity of cervical cancer cells to gefitinib through the PTEN/PI3K/Akt signaling pathway. miR-221 represents a potential target to increase the sensitivity to gefitinib in cervical cancer treatment.


Assuntos
MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinazolinas/farmacologia , Neoplasias do Colo do Útero/genética , Regiões 3' não Traduzidas/genética , Antineoplásicos/farmacologia , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cromonas/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Gefitinibe , Células HeLa , Humanos , Morfolinas/farmacologia , PTEN Fosfo-Hidrolase/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
20.
Mol Cell Biochem ; 420(1-2): 161-70, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27522665

RESUMO

High-mobility group box 1 (HMGB1) is associated with the development of rheumatoid arthritis (RA). Recent studies have shown that methotrexate (MTX) may inhibit the expression of HMGB1. This study examined whether HMGB1 might be involved in the treatment of RA using MTX. Synovial tissues were collected from RA patients who were treated with MTX for at least 6 months (RA-MTX group, 7 cases) and from those without MTX treatment (RA-noMTX group, 7 cases). Additionally, patients with osteoarthritis (OA group, 7 cases) were used as controls. The expression and locations of HMGB1 in the tissues were detected using real-time PCR, western blot, and immunohistochemistry. Additionally, OA-fibroblast-like synoviocytes (FLSs) and RA-FLSs were isolated and cultured, and the expression of HMGB1 was reduced in these cells by transfection with HMGB1 siRNA. Cell proliferation, migration, and invasion abilities were detected. Furthermore, the effects of HMGB1 on matrix metalloproteinase (MMP)-2 and MMP-13 were measured using western blot analysis. At the tissue level, HMGB1 expression in synovial membrane did not differ significantly between the OA and RA-MTX groups, but was significantly lower in these groups than in the RA-noMTX group. In cell experiments, the cell doubling time in the RA-FLS HMGB1 siRNA group was significantly extended compared with that in the RA-FLS negative control (NC)-siRNA group. The amount of cell migration and invasion in the RA-FLS HMGB1 siRNA group was significantly lower compared with that in the NC-siRNA group; the MMP-2 and MMP-13 expression levels were also lower. These results showed that MTX reduced HMGB1 expression in RA synovial tissues, and through the downregulation of HMGB1 expression in tissues, MTX may slow disease progression of RA.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Regulação para Baixo/efeitos dos fármacos , Fibroblastos/metabolismo , Proteína HMGB1/biossíntese , Metotrexato/farmacologia , Membrana Sinovial/metabolismo , Idoso , Artrite Reumatoide/patologia , Feminino , Fibroblastos/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Membrana Sinovial/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA