Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Pathol ; 263(1): 74-88, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38411274

RESUMO

Fascin actin-bundling protein 1 (Fascin) is highly expressed in a variety of cancers, including esophageal squamous cell carcinoma (ESCC), working as an important oncogenic protein and promoting the migration and invasion of cancer cells by bundling F-actin to facilitate the formation of filopodia and invadopodia. However, it is not clear how exactly the function of Fascin is regulated by acetylation in cancer cells. Here, in ESCC cells, the histone acetyltransferase KAT8 catalyzed Fascin lysine 41 (K41) acetylation, to inhibit Fascin-mediated F-actin bundling and the formation of filopodia and invadopodia. Furthermore, NAD-dependent protein deacetylase sirtuin (SIRT) 7-mediated deacetylation of Fascin-K41 enhances the formation of filopodia and invadopodia, which promotes the migration and invasion of ESCC cells. Clinically, the analysis of cancer and adjacent tissue samples from patients with ESCC showed that Fascin-K41 acetylation was lower in the cancer tissue of patients with lymph node metastasis than in that of patients without lymph node metastasis, and low levels of Fascin-K41 acetylation were associated with a poorer prognosis in patients with ESCC. Importantly, K41 acetylation significantly blocked NP-G2-044, one of the Fascin inhibitors currently being clinically evaluated, suggesting that NP-G2-044 may be more suitable for patients with low levels of Fascin-K41 acetylation, but not suitable for patients with high levels of Fascin-K41 acetylation. © 2024 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Proteínas de Transporte , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteínas dos Microfilamentos , Sirtuínas , Humanos , Acetilação , Actinas/metabolismo , Linhagem Celular Tumoral , Neoplasias Esofágicas/patologia , Histona Acetiltransferases/metabolismo , Metástase Linfática , Sirtuínas/metabolismo
2.
J Pathol ; 263(1): 99-112, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38411280

RESUMO

Desmoglein-2 (DSG2) is a transmembrane glycoprotein belonging to the desmosomal cadherin family, which mediates cell-cell junctions; regulates cell proliferation, migration, and invasion; and promotes tumor development and metastasis. We previously showed serum DSG2 to be a potential biomarker for the diagnosis of esophageal squamous cell carcinoma (ESCC), although the significance and underlying molecular mechanisms were not identified. Here, we found that DSG2 was increased in ESCC tissues compared with adjacent tissues. In addition, we demonstrated that DSG2 promoted ESCC cell migration and invasion. Furthermore, using interactome analysis, we identified serine/threonine-protein kinase D2 (PRKD2) as a novel DSG2 kinase that mediates the phosphorylation of DSG2 at threonine 730 (T730). Functionally, DSG2 promoted ESCC cell migration and invasion dependent on DSG2-T730 phosphorylation. Mechanistically, DSG2 T730 phosphorylation activated EGFR, Src, AKT, and ERK signaling pathways. In addition, DSG2 and PRKD2 were positively correlated with each other, and the overall survival time of ESCC patients with high DSG2 and PRKD2 was shorter than that of patients with low DSG2 and PRKD2 levels. In summary, PRKD2 is a novel DSG2 kinase, and PRKD2-mediated DSG2 T730 phosphorylation promotes ESCC progression. These findings may facilitate the development of future therapeutic agents that target DSG2 and DSG2 phosphorylation. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/metabolismo , Fosforilação , Proteína Quinase D2 , Neoplasias Esofágicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Serina , Movimento Celular/fisiologia , Regulação Neoplásica da Expressão Gênica , Desmogleína 2/genética , Desmogleína 2/metabolismo
3.
Mol Cell Proteomics ; 22(8): 100593, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37328063

RESUMO

Proteins containing a CAAX motif at the C-terminus undergo prenylation for localization and activity and include a series of key regulatory proteins, such as RAS superfamily members, heterotrimeric G proteins, nuclear lamina protein, and several protein kinases and phosphatases. However, studies of prenylated proteins in esophageal cancer are limited. Here, through research on large-scale proteomic data of esophageal cancer in our laboratory, we found that paralemmin-2 (PALM2), a potential prenylated protein, was upregulated and associated with poor prognosis in patients. Low-throughput verification showed that the expression of PALM2 in esophageal cancer tissues was higher than that in their paired normal esophageal epithelial tissues, and it was generally expressed in the membrane and cytoplasm of esophageal cancer cells. PALM2 interacted with the two subunits of farnesyl transferase (FTase), FNTA and FNTB. Either the addition of an FTase inhibitor or mutation in the CAAX motif of PALM2 (PALM2C408S) impaired its membranous localization and reduced the membrane location of PALM2, indicating PALM2 was prenylated by FTase. Overexpression of PALM2 enhanced the migration of esophageal squamous cell carcinoma cells, whereas PALM2C408S lost this ability. Mechanistically, PALM2 interacted with the N-terminal FERM domain of ezrin of the ezrin/radixin/moesin (ERM) family. Mutagenesis indicated that lysine residues K253/K254/K262/K263 in ezrin's FERM domain and C408 in PALM2's CAAX motif were important for PALM2/ezrin interaction and ezrin activation. Knockout of ezrin prevented enhanced cancer cell migration by PALM2 overexpression. PALM2, depending on its prenylation, increased both ezrin membrane localization and phosphorylation of ezrin at Y146. In summary, prenylated PALM2 enhances the migration of cancer cells by activating ezrin.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Movimento Celular , Neoplasias Esofágicas/metabolismo , Proteômica
4.
Mol Cell Proteomics ; 22(6): 100551, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37076047

RESUMO

Esophageal cancer is the seventh most common cancer in the world. Although traditional treatment methods such as radiotherapy and chemotherapy have good effects, their side effects and drug resistance remain problematic. The repositioning of drug function provides new ideas for the research and development of anticancer drugs. We previously showed that the Food and Drug Administration-approved drug sulconazole can effectively inhibit the growth of esophageal cancer cells, but its molecular mechanism is not clear. Here, our study demonstrated that sulconazole had a broad spectrum of anticancer effects. It can not only inhibit the proliferation but also inhibit the migration of esophageal cancer cells. Both transcriptomic sequencing and proteomic sequencing showed that sulconazole could promote various types of programmed cell death and inhibit glycolysis and its related pathways. Experimentally, we found that sulconazole induced apoptosis, pyroptosis, necroptosis, and ferroptosis. Mechanistically, sulconazole triggered mitochondrial oxidative stress and inhibited glycolysis. Finally, we showed that low-dose sulconazole can increase radiosensitivity of esophageal cancer cells. Taken together, these new findings provide strong laboratory evidence for the clinical application of sulconazole in esophageal cancer.


Assuntos
Neoplasias Esofágicas , Proteômica , Humanos , Linhagem Celular Tumoral , Neoplasias Esofágicas/metabolismo , Tolerância a Radiação , Estresse Oxidativo , Apoptose , Glicólise
5.
Mol Psychiatry ; 28(3): 1383-1395, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36481932

RESUMO

In response to stressful events, the hypothalamic-pituitary-adrenal (HPA) axis is activated, and consequently glucocorticoids are released by the adrenal gland into the blood circulation. A large body of research has illustrated that excessive glucocorticoids in the hippocampus exerts negative feedback regulation of the HPA axis through glucocorticoid receptor (GR), which is critical for the homeostasis of the HPA axis. Maternal prenatal stress causes dysfunction of the HPA axis feedback mechanism in their offspring in adulthood. Here we report that telomerase reverse transcriptase (TERT) gene knockout causes hyperactivity of the HPA axis without hippocampal GR deficiency. We found that the level of TERT in the dentate gyrus (DG) of the hippocampus during the developmental stage determines the responses of the HPA axis to stressful events in adulthood through modulating the excitability of the dentate granular cells (DGCs) rather than the expression of GR. Our study also suggests that the prenatal high level of glucocorticoids exposure-induced hypomethylation at Chr13:73764526 in the first exon of mouse Tert gene accounted for TERT deficiency in the DG and HPA axis abnormality in the adult offspring. This study reveals a novel GR-independent mechanism underlying prenatal stress-associated HPA axis impairment, providing a new angle for understanding the mechanisms for maintaining HPA axis homeostasis.


Assuntos
Sistema Hipotálamo-Hipofisário , Receptores de Glucocorticoides , Feminino , Gravidez , Animais , Camundongos , Sistema Hipotálamo-Hipofisário/metabolismo , Receptores de Glucocorticoides/metabolismo , Glucocorticoides/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Homeostase
6.
J Fluoresc ; 34(1): 203-212, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37191827

RESUMO

Okanin, a major flavonoid of a popular herb tea, Coreopsis tinctoria Nutt., showed strong inhibition on CYP3A4 and CYP2D6. The strong interaction between okanin and CYPs were determined by enzyme kinetics, multispectral technique and molecular docking. The inhibition type of two enzymes, CYP3A4 and CYP2D6, by okanin are mixed and non-competitive inhibition type, respectively. The IC50 values and the binding constant of okanin to CYP3A4 can be deduced that the interaction was stronger than that of CYP2D6. The Conformations of CYP3A4 and CYP2D6 were changed by okanin. The evidence from fluorescence measurement along with molecular docking verified that these two CYPs were bound with okanin by hydrogen bonds and hydrophobic forces. Our investigation suggested that okanin may lead to interactions between herb and drug by inhibiting CYP3A4 and CYP2D6 activities, thus its consumption should be taken with caution.


Assuntos
Chalconas , Citocromo P-450 CYP2D6 , Citocromo P-450 CYP3A , Humanos , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP2D6/química , Citocromo P-450 CYP2D6/metabolismo , Simulação de Acoplamento Molecular , Sistema Enzimático do Citocromo P-450/metabolismo
8.
Echocardiography ; 41(5): e15826, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38678584

RESUMO

This case report describes a 35-year-old female patient who presented with palpitations and shortness of breath. Imaging findings suggested a cardiac tumor, histopathology confirmed primary cardiac angiosarcoma. This tumor is highly aggressive, usually occurs in the right atrium, lacks specificity in clinical presentation, is prone to early metastasis, and has a poor prognosis. Echocardiography is the method of choice for early detection and is important in assessing tumor size, location, mode of attachment and whether cardiac function is impaired.


Assuntos
Ecocardiografia , Neoplasias Cardíacas , Hemangiossarcoma , Humanos , Neoplasias Cardíacas/diagnóstico por imagem , Neoplasias Cardíacas/diagnóstico , Feminino , Hemangiossarcoma/diagnóstico por imagem , Hemangiossarcoma/diagnóstico , Adulto , Ecocardiografia/métodos , Átrios do Coração/diagnóstico por imagem , Diagnóstico Diferencial
9.
Luminescence ; 39(1): e4605, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37795938

RESUMO

Some ingredients from herbal medicine can significantly affect the activity of CYP2D6, thus leading to serious interactions between herbs and drugs. Quercetin and hyperoside are active ingredients widely found in vegetables, fruits, and herbal medicines. Quercetin and hyperoside have many biological activities. In this work, the characteristic bindings of CYP2D6 with quercetin/hyperoside are revealed by multi-spectroscopy analysis, molecular docking, and molecular dynamics simulations. The fluorescence of CYP2D6 is statically quenched by quercetin and hyperoside. The binding constant (Ka ) values of CYP2D6-quercetin/hyperoside range from 104 L mol-1 , which indicates that these two flavonoids bind moderately to CYP2D6. Meanwhile, quercetin has a stronger quenching ability to CYP2D6 than that of hyperoside. The secondary structure of CYP2D6 is obviously changed by binding with quercetin/hyperoside. The docking results reveal that the quercetin/hyperoside enters the active site of CYP2D6 near heme and binds to CYP2D6 by hydrogen bonds and van der Waals forces. The molecular dynamics simulation results indicate that the binding of quercetin/hyperoside can stabilize the two complexes, enhance the flexibility of CYP2D6 backbone atoms, and make a more unfolded and looser structure of CYP2D6.


Assuntos
Simulação de Dinâmica Molecular , Quercetina , Quercetina/química , Citocromo P-450 CYP2D6/metabolismo , Simulação de Acoplamento Molecular
10.
J Clin Ultrasound ; 52(5): 635-637, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38532653

RESUMO

Rhabdomyosarcoma (RMS) is the most common malignant soft tissue tumor in children, and botryoid rhabdomyosarcoma (BRMS) represents a subtype of RMS. BRMS primarily occurs in infants, young children, and adolescent females, with a predilection for mucosa-lined hollow organs such as the bladder, vagina, bile duct, and so on. Its occurrence in the biliary tract is extremely rare. Due to the high malignancy and rapid metastasis of biliary botryoid rhabdomyosarcoma, early diagnosis and treatment are crucial for improving prognosis.


Assuntos
Rabdomiossarcoma , Humanos , Rabdomiossarcoma/diagnóstico por imagem , Feminino , Criança , Masculino , Neoplasias do Sistema Biliar/diagnóstico por imagem , Diagnóstico Diferencial , Ultrassonografia/métodos
11.
J Fluoresc ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37603228

RESUMO

Cyanidin, peonidin and cyanidin-3-galactoside are the common anthocyanins with a variety of biological activities. Tyrosinase is a speed-limiting enzyme associated with melanin production. The inhibition of tyrosinase activity can prevent melanin disease while contributing to whitening. The interaction behaviors of the three anthocyanins against tyrosinase have been discussed in this paper. Cyanidin has strongest inhibitory effect on tyrosinase, and then peonidin, cyanidin-3-galactoside. Furthermore, the inhibition of tyrosinase by the three anthocyanins is mixed modes. The three anthocyanins can induce the static fluorescence quenching of tyrosinase. Cyanidin exhibits strongest binding affinity on tyrosinase, and then peonidin, cyanidin-3-galactoside based on Ka values obtain by fluorescence analysis. The binding of all anthocyanin to tyrosinase induce its conformation changes. According to molecular docking and fluorescence studies, they bind to tyrosinase by hydrogen bond and van der Waals force. In addition, the optimal modes of the three anthocyanins with tyrosinase are predicated by molecular docking. This work emphasizes that cyanidin, peonidin and cyanidin-3-galactoside may be potential drugs for the treatment of diseases caused by melanin.

12.
Luminescence ; 38(9): 1654-1667, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37421260

RESUMO

The interactions of human CYP3A4 with three selected isomer flavonoids, such as astilbin, isoastilbin and neoastilbin, were clarified using spectral analysis, molecular docking, and molecular dynamics simulation. During binding with the three flavonoids, the intrinsic fluorescence of CYP3A4 was statically quenched in static mode with nonradiative energy conversion. The fluorescence and ultraviolet/visible (UV/vis) data revealed that the three flavonoids had a moderate and stronger binding affinity with CYP3A4 due to the order of the Ka1 and Ka2 values ranging from 104 to 105  L·mol-1 . In addition, astilbin had the highest affinity with CYP3A4, then isoastilbin and neoastilbin, at the three experimental temperatures. Multispectral analysis confirmed that binding of the three flavonoids resulted in clear changes in the secondary structure of CYP3A4. It was found from fluorescence, UV/vis and molecular docking analyses that these three flavonoids strongly bound to CYP3A4 by means of hydrogen bonds and van der Waals forces. The key amino acids around the binding site were also elucidated. Furthermore, the stabilities of the three CYP3A4 complexes were evaluated using molecular dynamics simulation.


Assuntos
Citocromo P-450 CYP3A , Flavonoides , Humanos , Simulação de Acoplamento Molecular , Flavonoides/química , Sítios de Ligação , Termodinâmica , Ligação Proteica , Espectrometria de Fluorescência/métodos , Dicroísmo Circular
13.
Luminescence ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038156

RESUMO

In this work, interaction mechanism of narcissoside with two α-amylase from Bacillus subtilis (BSA) and Porcine pancreatic (PPA) are comparatively studied by multi-spectral analysis, molecular docking and molecular dynamics simulation. The results prove that narcissoside can statically quench fluorescence of BSA/PPA. Two complexes are mainly formed by hydrogen bond and van der Waals force. With the increase of temperature, the two complexes formed by narcissoside and two enzymes become unstable. At the same experimental temperature, the binding force of narcissoside to PPA is higher than that of BSA. The binding of narcissoside to PPA/BSA increases the hydrophobicity of microenvironment. Moreover, the secondary structure of PPA/BSA is mainly changed by decreasing the α-helix. The optimal binding modes of narcissoside with BSA/PPA are predicted by molecular docking, and the stability of the two complexes is evaluated by molecular dynamics simulations.

14.
Mikrochim Acta ; 190(4): 118, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36884097

RESUMO

A novel molecular-imprinted polymer (MIP)-based enzyme-free biosensor was created for the selective detection of glycoprotein transferrin (Trf). For this purpose, MIP-based biosensor for Trf was prepared by electrochemical co-polymerization of novel hybrid monomers 3-aminophenylboronic acid (M-APBA) and pyrrole on a glassy carbon electrode (GCE) modified with carboxylated multi-walled carbon nanotubes (cMWCNTs). Hybrid epitopes of Trf (C-terminal fragment and glycan) have been selected as templates. The produced sensor exhibited great selective recognition ability toward Trf under optimal preparation conditions, offering good analytical range (0.125-1.25 µM) with a detection limit of 0.024 µM. The proposed hybrid epitope in combination with hybrid monomer-mediated imprinting strategy was successfully applied to detect Trf in spiked human serum samples, with recoveries and relative standard deviations ranging from 94.7 to 106.0% and 2.64 to 5.32%, respectively. This study provided a reliable protocol for preparing hybrid epitopes and monomers-mediated MIP for the synergistic and effective determination of glycoprotein in complicated biological samples.


Assuntos
Técnicas Biossensoriais , Impressão Molecular , Nanotubos de Carbono , Humanos , Polímeros , Epitopos , Impressão Molecular/métodos , Transferrina , Glicoproteínas , Técnicas Biossensoriais/métodos
15.
Drug Dev Res ; 84(2): 326-336, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36567647

RESUMO

Half of the world's population is Helicobacter pylori carrier. Updated guidelines and consensus have been issued across regions with the main aim of reducing social transmission and increasing H. pylori eradication rate. Although alternative therapies including traditional Chinese medicine and probiotics have also been used to improve H. pylori eradication rate in clinical practice, current mainstream treatment is still dependent on triple and quadruple therapies that includes antibacterial agents (e.g., amoxicillin and furazolidone) and proton pump inhibitor. Researches also assessed the eradication rate of optimized high-dose dual therapy in treating H. pylori infection. With the increase of antibiotic resistance rate, the treatment strategies for H. pylori infection are constantly adjusted and improved. Besides, low medication compliance is another key influencing factor for H. pylori treatment failure. Emerging studies indicate that pharmacists' intervention and new pharmaceutical care methods can enhance patient medication compliance, reduce adverse drug reactions, and improve H. pylori eradication rate. The purpose of this review is to summarize the advances in treating H. pylori infection and highlight the necessity of developing novel strategies to cope with the increasing challenges and to achieve personalized medication. Also, this review attaches great importance to pharmacists in optimizing H. pylori treatment outcomes as a routine part of therapy.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Conduta do Tratamento Medicamentoso , Farmacêuticos , Quimioterapia Combinada , Antibacterianos/farmacologia , Resultado do Tratamento
16.
Hum Genomics ; 15(1): 55, 2021 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-34419170

RESUMO

Whether microRNAs (miRNAs) from plasma exosomes might be dysregulated in patients with depression, especially treatment-resistant depression (TRD), remains unclear, based on study of which novel biomarkers and therapeutic targets could be discovered. To this end, a small sample study was performed by isolation of plasma exosomes from patients with TRD diagnosed by Hamilton scale. In this study, 4 peripheral plasma samples from patients with TRD and 4 healthy controls were collected for extraction of plasma exosomes. Exosomal miRNAs were analyzed by miRNA sequencing, followed by image collection, expression difference analysis, target gene GO enrichment analysis, and KEGG pathway enrichment analysis. Compared with the healthy controls, 2 miRNAs in the plasma exosomes of patients with TRD showed significant differences in expression, among which has-miR-335-5p were significantly upregulated and has-miR-1292-3p were significantly downregulated. Go and KEGG analysis showed that dysregulated miRNAs affect postsynaptic density and axonogenesis as well as the signaling pathway of axon formation and cell growths. The identification of these miRNAs and their target genes may provide novel biomarkers for improving diagnosis accuracy and treatment effectiveness of TRD.


Assuntos
Transtorno Depressivo Resistente a Tratamento/genética , Exossomos/genética , MicroRNAs/genética , Adolescente , Adulto , Idoso , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Transtorno Depressivo Resistente a Tratamento/patologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência de RNA/métodos , Adulto Jovem
17.
Anal Bioanal Chem ; 414(7): 2481-2491, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35048137

RESUMO

A novel deep eutectic solvent-magnetic molecularly imprinted polymer (DES-MMIP) for the specific removal of oxalic acid (OA) was prepared by an environmentally friendly deep eutectic solvent, consisting of betaine, citric acid, and glycerol, which acted as the functional monomer for polymerization. The structure and morphology of DES-MMIPs were studied by X-ray diffraction, scanning and transmission electron microscopy, thermal gravimetric analysis, Fourier transform infrared spectroscopy, and vibrating sample magnetometer. DES-MMIPs had a core-shell structure, with magnetic iron oxide as the core, and showed good thermal stability and high adsorption capacity (18.73 mg/g) for OA. The adsorption process of OA by DES-MMIPs followed the pseudo-second-order kinetic model and Langmuir isotherm model. DES-MMIPs had significant selectivity for OA and their imprinting factor was 3.26. When applied to real samples, high performance liquid chromatography analysis showed that DES-MMIPs could remove OA from both spinach and blood serum. These findings provide potential methods for removal of OA from vegetables and for specific removal of OA in renal dialysis.


Assuntos
Impressão Molecular , Adsorção , Solventes Eutéticos Profundos , Humanos , Impressão Molecular/métodos , Ácido Oxálico , Solventes/química , Verduras
18.
J Neuroinflammation ; 18(1): 253, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34727939

RESUMO

BACKGROUND: Streptococcus pneumoniae meningitis is a destructive central nervous system (CNS) infection with acute and long-term neurological disorders. Previous studies suggest that p75NTR signaling influences cell survival, apoptosis, and proliferation in brain-injured conditions. However, the role of p75NTR signaling in regulating pneumococcal meningitis (PM)-induced neuroinflammation and altered neurogenesis remains largely to be elucidated. METHODS: p75NTR signaling activation in the pathological process of PM was assessed. During acute PM, a small-molecule p75NTR modulator LM11A-31 or vehicle was intranasally administered for 3 days prior to S. pneumoniae exposure. At 24 h post-infection, clinical severity, histopathology, astrocytes/microglia activation, neuronal apoptosis and necrosis, inflammation-related transcription factors and proinflammatory cytokines/mediators were evaluated. Additionally, p75NTR was knocked down by the adenovirus-mediated short-hairpin RNA (shRNA) to ascertain the role of p75NTR in PM. During long-term PM, the intranasal administration of LM11A-31 or vehicle was continued for 7 days after successfully establishing the PM model. Dynamic changes in inflammation and hippocampal neurogenesis were assessed. RESULTS: Our results revealed that both 24 h (acute) and 7, 14, 28 day (long-term) groups of infected rats showed increased p75NTR expression in the brain. During acute PM, modulation of p75NTR through pretreatment of PM model with LM11A-31 significantly alleviated S. pneumoniae-induced clinical severity, histopathological injury and the activation of astrocytes and microglia. LM11A-31 pretreatment also significantly ameliorated neuronal apoptosis and necrosis. Moreover, we found that blocking p75NTR with LM11A-31 decreased the expression of inflammation-related transcription factors (NF-κBp65, C/EBPß) and proinflammatory cytokines/mediators (IL-1ß, TNF-α, IL-6 and iNOS). Furthermore, p75NTR knockdown induced significant changes in histopathology and inflammation-related transcription factors expression. Importantly, long-term LM11A-31 treatment accelerated the resolution of PM-induced inflammation and significantly improved hippocampal neurogenesis. CONCLUSION: Our findings suggest that the p75NTR signaling plays an essential role in the pathogenesis of PM. Targeting p75NTR has beneficial effects on PM rats by alleviating neuroinflammation and promoting hippocampal neurogenesis. Thus, the p75NTR signaling may be a potential therapeutic target to improve the outcome of PM.


Assuntos
Hipocampo/patologia , Meningite Pneumocócica/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Doenças Neuroinflamatórias/patologia , Receptores de Fatores de Crescimento/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Isoleucina/análogos & derivados , Isoleucina/farmacologia , Morfolinas/farmacologia , Neurogênese/efeitos dos fármacos , Doenças Neuroinflamatórias/metabolismo , Ratos , Ratos Sprague-Dawley
19.
Amino Acids ; 53(8): 1197-1209, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34223992

RESUMO

Riboflavin is an essential micronutrient for normal cellular growth and function. Lack of dietary riboflavin is associated with an increased risk for esophageal squamous cell carcinoma (ESCC). Previous studies have identified that the human riboflavin transporter SLC52A3a isoform (encoded by SLC52A3) plays a prominent role in esophageal cancer cell riboflavin transportation. Furthermore, SLC52A3 gene single nucleotide polymorphisms rs3746804 (T>C, L267P) and rs3746803 (C >T, T278M) are associated with ESCC risk. However, whether SLC52A3a (p.L267P) and (p.T278M) act in riboflavin transportation in esophageal cancer cell remains inconclusive. Here, we constructed the full-length SLC52A3a protein fused to green fluorescent protein (GFP-SLC52A3a-WT and mutants L267P, T278M, and L267P/T278M). It was confirmed by immunofluorescence-based confocal microscopy that SLC52A3a-WT, L267P, T278M, and L267P/T278M expressed in cell membrane, as well as in a variety of intracellular punctate structures. The live cell confocal imaging showed that SLC52A3a-L267P and L267P/T278M increased the intracellular trafficking of SLC52A3a in ESCC cells. Fluorescence recovery after photobleaching of GFP-tagged SLC52A3a meant that intracellular trafficking of SLC52A3a-L267P and L267P/T278M was rapid dynamics process, leading to its stronger ability to transport riboflavin. Taken together, the above results indicated that the rs3746804 (p.L267P) polymorphism promoted intracellular trafficking of SLC52A3a and riboflavin transportation in ESCC cells.


Assuntos
Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Proteínas de Membrana Transportadoras/genética , Polimorfismo de Nucleotídeo Único , Riboflavina/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Exoma , Proteínas de Fluorescência Verde/genética , Humanos , Reação em Cadeia da Polimerase/métodos
20.
Pharmacol Res ; 169: 105636, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33932606

RESUMO

Proparacaine (PPC) is a previously discovered topical anesthetic for ophthalmic optometry and surgery by blocking the central Nav1.3. In this study, we found that proparacaine hydrochloride (PPC-HCl) exerted an acute robust antiepileptic effect in pilocarpine-induced epilepsy mice. More importantly, chronic treatment with PPC-HCl totally terminated spontaneous recurrent seizure occurrence without significant toxicity. Chronic treatment with PPC-HCl did not cause obvious cytotoxicity, neuropsychiatric adverse effects, hepatotoxicity, cardiotoxicity, and even genotoxicity that evaluated by whole genome-scale transcriptomic analyses. Only when in a high dose (50 mg/kg), the QRS interval measured by electrocardiography was slightly prolonged, which was similar to the impact of levetiracetam. Nevertheless, to overcome this potential issue, we adopt a liposome encapsulation strategy that could alleviate cardiotoxicity and prepared a type of hydrogel containing PPC-HCl for sustained release. Implantation of thermosensitive chitosan-based hydrogel containing liposomal PPC-HCl into the subcutaneous tissue exerted immediate and long-lasting remission from spontaneous recurrent seizure in epileptic mice without affecting QRS interval. Therefore, this new liposomal hydrogel formulation of proparacaine could be developed as a transdermal patch for treating epilepsy, avoiding the severe toxicity after chronic treatment with current antiepileptic drugs in clinic.


Assuntos
Anticonvulsivantes/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Epilepsia/tratamento farmacológico , Propoxicaína/uso terapêutico , Animais , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/efeitos adversos , Eletroencefalografia , Elevação dos Membros Posteriores , Hidrogéis , Lipossomos/administração & dosagem , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Teste de Campo Aberto/efeitos dos fármacos , Propoxicaína/administração & dosagem , Propoxicaína/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA