Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 22(11): 4307-4314, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35604392

RESUMO

The topological electronic structure plays a central role in the nontrivial physical properties in topological quantum materials. A minimal, "hydrogen-atom-like" topological electronic structure is desired for research. In this work, we demonstrate an effort toward the realization of such a system in the intrinsic magnetic topological insulator MnBi2Te4, by manipulating the topological surface state (TSS) via surface modification. Using high resolution laser- and synchrotron-based angle-resolved photoemission spectroscopy (ARPES), we found the TSS in MnBi2Te4 is heavily hybridized with a trivial Rashba-type surface state (RSS), which could be efficiently removed by the in situ surface potassium (K) dosing. By employing multiple experimental methods to characterize K dosed surface, we attribute such a modification to the electrochemical reactions of K clusters on the surface. Our work not only gives a clear band assignment in MnBi2Te4 but also provides possible new routes in accentuating the topological behavior in the magnetic topological quantum materials.

2.
Nano Lett ; 22(15): 6320-6327, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35894743

RESUMO

Ultrathin films of intrinsic magnetic topological insulator MnBi2Te4 exhibit fascinating quantum properties such as the quantum anomalous Hall effect and the axion insulator state. In this work, we systematically investigate the evolution of the electronic structure of MnBi2Te4 thin films. With increasing film thickness, the electronic structure changes from an insulator type with a large energy gap to one with in-gap topological surface states, which is, however, still in drastic contrast to the bulk material. By surface doping of alkali-metal atoms, a Rashba split band gradually emerges and hybridizes with topological surface states, which not only reconciles the puzzling difference between the electronic structures of the bulk and thin-film MnBi2Te4 but also provides an interesting platform to establish Rashba ferromagnet that is attractive for (quantum) anomalous Hall effect. Our results provide important insights into the understanding and engineering of the intriguing quantum properties of MnBi2Te4 thin films.

3.
Phys Rev Lett ; 123(4): 047203, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31491273

RESUMO

The recent discovery of intrinsic ferromagnetic order in the atomically thin van der Waals crystal CrXTe_{3} (X=Si, Ge) stimulates intensive studies on the nature of low-dimensional magnetism because the presence of long-range magnetic order in two-dimensional systems with continuous symmetry is strictly prohibited by thermal fluctuations. By combining advanced many-body calculations with angle-resolved photoemission spectroscopy we investigate CrSiTe_{3} single crystals and unveil the pivotal role played by the strong electronic correlations at both high- and low-temperature regimes. Above the Curie temperature (T_{c}), Coulomb repulsion (U) drives the system into a charge transfer insulating phase. In contrast, below T_{c} the crystal field arranges the Cr-3d orbitals such that the ferromagnetic superexchange profits, giving rise to the bulk ferromagnetic ground state with which the electronic correlations compete. The excellent agreement between theory and experiment establishes CrSiTe_{3} as a prototype low-dimensional crystal with the cooperation and interplay of electronic correlation and ferromagnetism.

4.
Proc Natl Acad Sci U S A ; 113(51): 14656-14661, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27930314

RESUMO

Silicene, analogous to graphene, is a one-atom-thick 2D crystal of silicon, which is expected to share many of the remarkable properties of graphene. The buckled honeycomb structure of silicene, along with enhanced spin-orbit coupling, endows silicene with considerable advantages over graphene in that the spin-split states in silicene are tunable with external fields. Although the low-energy Dirac cone states lie at the heart of all novel quantum phenomena in a pristine sheet of silicene, a hotly debated question is whether these key states can survive when silicene is grown or supported on a substrate. Here we report our direct observation of Dirac cones in monolayer silicene grown on a Ag(111) substrate. By performing angle-resolved photoemission measurements on silicene(3 × 3)/Ag(111), we reveal the presence of six pairs of Dirac cones located on the edges of the first Brillouin zone of Ag(111), which is in sharp contrast to the expected six Dirac cones centered at the K points of the primary silicene(1 × 1) Brillouin zone. Our analysis shows clearly that the unusual Dirac cone structure we have observed is not tied to pristine silicene alone but originates from the combined effects of silicene(3 × 3) and the Ag(111) substrate. Our study thus identifies the case of a unique type of Dirac cone generated through the interaction of two different constituents. The observation of Dirac cones in silicene/Ag(111) opens a unique materials platform for investigating unusual quantum phenomena and for applications based on 2D silicon systems.

5.
Natl Sci Rev ; 10(6): nwad035, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484834

RESUMO

Mott physics plays a critical role in materials with strong electronic correlations. Mott insulator-to-metal transition can be driven by chemical doping, external pressure, temperature and gate voltage, which is often seen in transition metal oxides with 3d electrons near the Fermi energy (e.g. cuprate superconductor). In 4f-electron systems, however, the insulator-to-metal transition is mostly driven by Kondo hybridization and the Mott physics has rarely been explored in experiments. Here, by combining the angle-resolved photoemission spectroscopy and strongly correlated band structure calculations, we show that an unusual Mott instability exists in YbInCu4 accompanying its mysterious first-order valence transition. This contrasts with the prevalent Kondo picture and demonstrates that YbInCu4 is a unique platform to explore the Mott physics in Kondo lattice systems. Our work provides important insight for the understanding and manipulation of correlated quantum phenomena in the f-electron system.

6.
Sci Bull (Beijing) ; 65(24): 2086-2093, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36732961

RESUMO

Magnetic topological quantum materials (TQMs) provide a fertile ground for the emergence of fascinating topological magneto-electric effects. Recently, the discovery of intrinsic antiferromagnetic (AFM) topological insulator MnBi2Te4 that could realize quantized anomalous Hall effect and axion insulator phase ignited intensive study on this family of TQM compounds. Here, we investigated the AFM compound MnBi4Te7 where Bi2Te3 and MnBi2Te4 layers alternate to form a superlattice. Using spatial- and angle-resolved photoemission spectroscopy, we identified ubiquitous (albeit termination dependent) topological electronic structures from both Bi2Te3 and MnBi2Te4 terminations. Unexpectedly, while the bulk bands show strong temperature dependence correlated with the AFM transition, the topological surface states with a diminishing gap show negligible temperature dependence across the AFM transition. Together with the results of its sister compound MnBi2Te4, we illustrate important aspects of electronic structures and the effect of magnetic ordering in this family of magnetic TQMs.

7.
Sci Bull (Beijing) ; 65(22): 1888-1893, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36738053

RESUMO

Thermoelectric materials (TMs) can uniquely convert waste heat into electricity, which provides a potential solution for the global energy crisis that is increasingly severe. Bulk Cu2Se, with ionic conductivity of Cu ions, exhibits a significant enhancement of its thermoelectric figure of merit zT by a factor of ~3 near its structural transition around 400 K. Here, we show a systematic study of the electronic structure of Cu2Se and its temperature evolution using high-resolution angle-resolved photoemission spectroscopy. Upon heating across the structural transition, the electronic states near the corner of the Brillouin zone gradually disappear, while the bands near the centre of Brillouin zone shift abruptly towards high binding energies and develop an energy gap. Interestingly, the observed band reconstruction well reproduces the temperature evolution of the Seebeck coefficient of Cu2Se, providing an electronic origin for the drastic enhancement of the thermoelectric performance near 400 K. The current results not only bridge among structural phase transition, electronic structures and thermoelectric properties in a condensed matter system, but also provide valuable insights into the search and design of new generation of thermoelectric materials.

8.
Nat Phys ; 14(11): 1125-1131, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30416534

RESUMO

Magnetic Weyl semimetals with broken time-reversal symmetry are expected to generate strong intrinsic anomalous Hall effects, due to their large Berry curvature. Here, we report a magnetic Weyl semimetal candidate, Co3Sn2S2, with a quasi-two-dimensional crystal structure consisting of stacked Kagomé lattices. This lattice provides an excellent platform for hosting exotic topological quantum states. We observe a negative magnetoresistance that is consistent with the chiral anomaly expected from the presence of Weyl nodes close to the Fermi level. The anomalous Hall conductivity is robust against both increased temperature and charge conductivity, which corroborates the intrinsic Berry-curvature mechanism in momentum space. Owing to the low carrier density in this material and the significantly enhanced Berry curvature from its band structure, the anomalous Hall conductivity and the anomalous Hall angle simultaneously reach 1130 Ω-1 cm-1 and 20%, respectively, an order of magnitude larger than typical magnetic systems. Combining the Kagomé-lattice structure and the out-of-plane ferromagnetic order of Co3Sn2S2, we expect that this material is an excellent candidate for observation of the quantum anomalous Hall state in the two-dimensional limit.

9.
Sci Bull (Beijing) ; 62(13): 950-956, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36659466

RESUMO

The ongoing discoveries and studies of novel topological quantum materials have become an emergent and important field of condensed matter physics. Recently, HfTe5 ignited renewed interest as a candidate of a novel topological material. The single-layer HfTe5 is predicted to be a two-dimensional large band gap topological insulator and can be stacked into a bulk that may host a temperature-driven topological phase transition. Historically, HfTe5 attracted considerable interest for its anomalous transport properties characterized by a peculiar resistivity peak accompanied by a sign reversal carrier type. The origin of the transport anomaly remains under a hot debate. Here we report the first high-resolution laser-based angle-resolved photoemission measurements on the temperature-dependent electronic structure in HfTe5. Our results indicated that a temperature-induced Lifshitz transition occurs in HfTe5, which provides a natural understanding on the origin of the transport anomaly in HfTe5. In addition, our observations suggest that HfTe5 is a weak topological insulator that is located at the phase boundary between weak and strong topological insulators at very low temperature.

10.
Nat Commun ; 8: 15512, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28534501

RESUMO

The topological materials have attracted much attention for their unique electronic structure and peculiar physical properties. ZrTe5 has host a long-standing puzzle on its anomalous transport properties manifested by its unusual resistivity peak and the reversal of the charge carrier type. It is also predicted that single-layer ZrTe5 is a two-dimensional topological insulator and there is possibly a topological phase transition in bulk ZrTe5. Here we report high-resolution laser-based angle-resolved photoemission measurements on the electronic structure and its detailed temperature evolution of ZrTe5. Our results provide direct electronic evidence on the temperature-induced Lifshitz transition, which gives a natural understanding on underlying origin of the resistivity anomaly in ZrTe5. In addition, we observe one-dimensional-like electronic features from the edges of the cracked ZrTe5 samples. Our observations indicate that ZrTe5 is a weak topological insulator and it exhibits a tendency to become a strong topological insulator when the layer distance is reduced.

11.
Nat Commun ; 7: 10608, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26853801

RESUMO

The mechanism of high-temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure plays an essential role in dictating superconductivity. Recent revelation of distinct electronic structure and high-temperature superconductivity in the single-layer FeSe/SrTiO3 films provides key information on the role of Fermi surface topology and interface in inducing or enhancing superconductivity. Here we report high-resolution angle-resolved photoemission measurements on the electronic structure and superconducting gap of an FeSe-based superconductor, (Li0.84Fe0.16)OHFe0.98Se, with a Tc at 41 K. We find that this single-phase bulk superconductor shows remarkably similar electronic behaviours to that of the superconducting single-layer FeSe/SrTiO3 films in terms of Fermi surface topology, band structure and the gap symmetry. These observations provide new insights in understanding high-temperature superconductivity in the single-layer FeSe/SrTiO3 films and the mechanism of superconductivity in the bulk iron-based superconductors.

12.
Sci Rep ; 4: 5385, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24947490

RESUMO

The Dirac materials, such as graphene and three-dimensional topological insulators, have attracted much attention because they exhibit novel quantum phenomena with their low energy electrons governed by the relativistic Dirac equations. One particular interest is to generate Dirac cone anisotropy so that the electrons can propagate differently from one direction to the other, creating an additional tunability for new properties and applications. While various theoretical approaches have been proposed to make the isotropic Dirac cones of graphene into anisotropic ones, it has not yet been met with success. There are also some theoretical predictions and/or experimental indications of anisotropic Dirac cone in novel topological insulators and AMnBi2 (A = Sr and Ca) but more experimental investigations are needed. Here we report systematic high resolution angle-resolved photoemission measurements that have provided direct evidence on the existence of strongly anisotropic Dirac cones in SrMnBi2 and CaMnBi2. Distinct behaviors of the Dirac cones between SrMnBi2 and CaMnBi2 are also observed. These results have provided important information on the strong anisotropy of the Dirac cones in AMnBi2 system that can be governed by the spin-orbital coupling and the local environment surrounding the Bi square net.

13.
Nat Commun ; 5: 3382, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24584220

RESUMO

Topological insulators represent a new quantum state of matter that are insulating in the bulk but metallic on the edge or surface. In the Dirac surface state, it is well-established that the electron spin is locked with the crystal momentum. Here we report a new phenomenon of the spin texture locking with the orbital texture in a topological insulator Bi2Se3. We observe light-polarization-dependent spin texture of both the upper and lower Dirac cones that constitutes strong evidence of the orbital-dependent spin texture in Bi2Se3. The different spin texture detected in variable polarization geometry is the manifestation of the spin-orbital texture in the initial state combined with the photoemission matrix element effects. Our observations provide a new orbital degree of freedom and a new way of light manipulation in controlling the spin structure of the topological insulators that are important for their future applications in spin-related technologies.

14.
Sci Rep ; 4: 6106, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25139455

RESUMO

The three-dimensional topological semimetals represent a new quantum state of matter. Distinct from the surface state in the topological insulators that exhibits linear dispersion in two-dimensional momentum plane, the three-dimensional semimetals host bulk band dispersions linearly along all directions. In addition to the gapless points in the bulk, the three-dimensional Weyl/Dirac semimetals are also characterized by "topologically protected" surface state with Fermi arcs on their surface. While Cd3As2 is proposed to be a viable candidate of a Dirac semimetal, more investigations are necessary to pin down its nature. In particular, the topological surface state, the hallmark of the three-dimensional semimetal, has not been observed in Cd3As2. Here we report the electronic structure of Cd3As2 investigated by angle-resolved photoemission measurements on the (112) crystal surface and detailed band structure calculations. The measured Fermi surface and band structure show a good agreement with the band structure calculations with two bulk Dirac-like bands approaching the Fermi level and forming Dirac points near the Brillouin zone center. Moreover, the topological surface state with a linear dispersion approaching the Fermi level is identified for the first time. These results provide experimental indications on the nature of topologically non-trivial three-dimensional Dirac cones in Cd3As2.

15.
Sci Rep ; 3: 2411, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23934507

RESUMO

Three-dimensional topological insulators are characterized by insulating bulk state and metallic surface state involving relativistic Dirac fermions which are responsible for exotic quantum phenomena and potential applications in spintronics and quantum computations. It is essential to understand how the Dirac fermions interact with other electrons, phonons and disorders. Here we report super-high resolution angle-resolved photoemission studies on the Dirac fermion dynamics in the prototypical Bi2(Te,Se)3 topological insulators. We have directly revealed signatures of the electron-phonon coupling and found that the electron-disorder interaction dominates the scattering process. The Dirac fermion dynamics in Bi2(Te3-xSex) topological insulators can be tuned by varying the composition, x, or by controlling the charge carriers. Our findings provide crucial information in understanding and engineering the electron dynamics of the Dirac fermions for fundamental studies and potential applications.


Assuntos
Bismuto/química , Condutividade Elétrica , Transporte de Elétrons , Teoria Quântica , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA