Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Biomacromolecules ; 25(5): 3112-3121, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38651274

RESUMO

Responsive nanomaterials hold significant promise in the treatment of bacterial infections by recognizing internal or external stimuli to achieve stimuli-responsive behavior. In this study, we present an enzyme-responsive polyelectrolyte complex micelles (PTPMN) with α-helical cationic polypeptide as a coacervate-core for the treatment of Escherichia coli (E. coli) infection. The complex was constructed through electrostatic interaction between cationic poly(glutamic acid) derivatives and phosphorylation-modified poly(ethylene glycol)-b-poly(tyrosine) (PEG-b-PPTyr) by directly dissolving them in aqueous solution. The cationic polypeptide adopted α-helical structure and demonstrated excellent broad-spectrum antibacterial activity against both Gram-negative and Gram-positive bacteria, with a minimum inhibitory concentration (MIC) as low as 12.5 µg mL-1 against E. coli. By complexing with anionic PEG-b-PPTyr, the obtained complex formed ß-sheet structures and exhibited good biocompatibility and low hemolysis. When incubated in a bacterial environment, the complex cleaved its phosphate groups triggered by phosphatases secreted by bacteria, exposing the highly α-helical conformation and restoring its effective bactericidal ability. In vivo experiments confirmed accelerated healing in E. coli-infected wounds.


Assuntos
Antibacterianos , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Escherichia coli/efeitos dos fármacos , Animais , Testes de Sensibilidade Microbiana , Polieletrólitos/química , Polieletrólitos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Conformação Proteica em alfa-Hélice , Micelas , Infecções por Escherichia coli/tratamento farmacológico , Hemólise/efeitos dos fármacos , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Camundongos , Ácido Poliglutâmico/química , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/farmacologia , Humanos
2.
Angew Chem Int Ed Engl ; 63(27): e202403508, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38647357

RESUMO

MXenes have extensive applications due to their different properties determined by intrinsic structures and various functional groups. Exploring different functional groups of MXenes leads to improved performance or potential applications. In this work, we prepared new Ti3C2PBrx (x=0.4-0.6) MXene with phosphorus functional groups (-P) through a two-step gas-phase reaction. The acquisition of -P is achieved by replacing bromine functional groups (-Br) of Ti3C2Br2 in the phosphorus vapor. After -Br is replaced with -P, Ti3C2PBrx MXene shows an improved areal capacitance (360 mF cm-2) at 20 mV s-1 compared with Ti3C2Br2 MXene (102 mF cm-2). At a current density of 5 mA cm-2 after 10000 cycles, the capacitance retention of Ti3C2PBrx MXene has not decreased. The pseudocapacitive enhancement mechanism has been discovered based on the dual redox sites of the functional groups -P and Ti.

3.
J Nanobiotechnology ; 21(1): 190, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37312106

RESUMO

Developing an antibiotic-free wound dressing with effective hemostasis and antibacterial and antioxidant capacity is highly desirable. In this work, a three-dimensional (3D) chitosan/polyvinyl alcohol-tannic acid porous nanofiber sponge (3D-TA) was prepared via electrospinning. Compared with two-dimensional (2D) fiber membrane, the unique fluffy 3D-TA nanofiber sponge had high porosity, water absorption and retention ability, hemostatic capacity. Furthermore, the 3D sponge functionalized by tannic acid (TA) endow the sponge with high antibacterial and antioxidant capacity without loading antibiotics. In addition, 3D-TA composite sponges have shown highly biocompatibility against L929 cells. The in vivo experiment shows the 3D-TA is enable to accelerate wound healing. This newly 3D-TA sponges hold great potential as wound dressings for future clinical application.


Assuntos
Nanofibras , Antibacterianos/química , Porosidade , Nanofibras/química , Cicatrização , Antioxidantes/química , Hemostasia , Animais , Camundongos , Linhagem Celular
4.
Small ; 18(5): e2104448, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34841668

RESUMO

Pathogenic bacteria that adhere on the surface of textiles, especially healthcare workers' uniforms, have brought severe problems, including nosocomial infection and other infectious diseases. Here, antibacterial textiles are fabricated by in situ growing oxygen vacancies (OVs) BiOBr on the surface of Ti3 C2 nanosheets followed by in situ polymerization of polypyrrole (ppy). The formed Schottky heterojunction containing OVs of Ti3 C2 /BiOBr effectively enhance the transfer and separation of photogenerated carriers, inhibit the recombination, and decrease the band gap by introducing defect level, which significantly improve the photocatalytic activity, leading to higher reactive oxygen species (ROS) under light irradiation. Therefore, the antibacterial efficacy of textiles reaches up to 98.64% against Staphylococcus aureus and 99.89% against Escherichia coli with the assistance of hyperthermia under light irradiation for 15 min. This work provides insights for designing photo-excited antibacterial textiles by interfacial construction based on Schottky junctions and OVs in the incorporated nanomaterials.


Assuntos
Oxigênio , Polímeros , Antibacterianos/farmacologia , Bismuto , Catálise , Humanos , Pirróis/farmacologia , Têxteis , Titânio/farmacologia
5.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163814

RESUMO

Combining multiple drugs or biologically active substances for wound healing could not only resist the formation of multidrug resistant pathogens, but also achieve better therapeutic effects. Herein, the hydrophobic fluoroquinolone antibiotic ciprofloxacin (CIP) and the hydrophilic broad-spectrum antibiotic tetracycline hydrochloride (TH) were introduced into the coaxial polycaprolactone/gelatin (PCL/GEL) nanofiber mat with CIP loaded into the PCL (core layer) and TH loaded into the GEL (shell layer), developing antibacterial wound dressing with the co-delivering of the two antibiotics (PCL-CIP/GEL-TH). The nanostructure, physical properties, drug release, antibacterial property, and in vitro cytotoxicity were investigated accordingly. The results revealed that the CIP shows a long-lasting release of five days, reaching the releasing rate of 80.71%, while the cumulative drug release of TH reached 83.51% with a rapid release behavior of 12 h. The in vitro antibacterial activity demonstrated that the coaxial nanofiber mesh possesses strong antibacterial activity against E. coli and S. aureus. In addition, the coaxial mats showed superior biocompatibility toward human skin fibroblast cells (hSFCs). This study indicates that the developed PCL-CIP/GEL-TH nanofiber membranes hold enormous potential as wound dressing materials.


Assuntos
Ciprofloxacina/administração & dosagem , Escherichia coli/crescimento & desenvolvimento , Pele/citologia , Staphylococcus aureus/crescimento & desenvolvimento , Tetraciclina/administração & dosagem , Cicatrização , Animais , Bandagens , Linhagem Celular , Ciprofloxacina/química , Ciprofloxacina/farmacologia , Modelos Animais de Doenças , Composição de Medicamentos , Sinergismo Farmacológico , Escherichia coli/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Gelatina/química , Humanos , Viabilidade Microbiana , Nanofibras , Poliésteres/química , Pele/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Tetraciclina/química , Tetraciclina/farmacologia
6.
Int J Mol Sci ; 23(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35628439

RESUMO

Bone substitutes with strong antibacterial properties and bone regeneration effects have an inherent potential in the treatment of severe bone tissue infections, such as osteomyelitis. In this study, vancomycin (Van) was loaded into zeolitic imidazolate framework-8 (ZIF-8) to prepare composite particles, which is abbreviated as V@Z. As a pH-responsive particle, ZIF-8 can be cleaved in the weak acid environment caused by bacterial infection to realize the effective release of drugs. Then, V@Z was loaded into polyvinyl alcohol (PVA) fiber by electrospinning to prepare PVA/V@Z composite bone filler. The drug-loading rate of V@Z was about 6.735%. The membranes exhibited super hydrophilicity, water absorption and pH-controlled Van release behavior. The properties of anti E. coli and S. aureus were studied under the pH conditions of normal physiological tissues and infected tissues (pH 7.4 and pH 6.5, respectively). It was found that the material had good surface antibacterial adhesion and antibacterial property. The PVA/V@Z membrane had the more prominent bacteria-killing effect compared with the same amount of single antibacterial agent containing membrane such as ZIF-8 or Van loaded PVA, and the antibacterial rate was up to 99%. The electrospun membrane had good biocompatibility and can promote MC3T3-E1 cell spreading on it.


Assuntos
Nanofibras , Zeolitas , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli , Nanofibras/química , Álcool de Polivinil/química , Staphylococcus aureus , Vancomicina/farmacologia
7.
Int J Mol Sci ; 23(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36142896

RESUMO

Bacterial infections and inflammation are two main factors for delayed wound healing. Coaxial electrospinning nanofibrous patches, by co-loading and sequential co-delivering of anti-bacterial and anti-inflammation agents, are promising wound dressing for accelerating wound healing. Herein, curcumin (Cur) was loaded into the polycaprolactone (PCL) core, and broad-spectrum antibacterial tetracycline hydrochloride (TH) was loaded into gelatin (GEL) shell to prepare PCL-Cur/GEL-TH core-shell nanofiber membranes. The fibers showed a clear co-axial structure and good water absorption capacity, hydrophilicity and mechanical properties. In vitro drug release results showed sequential release of Cur and TH, in which the coaxial mat showed good antioxidant activity by DPPH test and excellent antibacterial activity was demonstrated by a disk diffusion method. The coaxial mats showed superior biocompatibility toward human immortalized keratinocytes. This study indicates a coaxial nanofiber membrane combining anti-bacterial and anti-inflammation agents has great potential as a wound dressing for promoting wound repair.


Assuntos
Curcumina , Nanofibras , Antibacterianos/química , Antioxidantes/farmacologia , Curcumina/farmacologia , Gelatina , Humanos , Nanofibras/química , Poliésteres/química , Tetraciclina/farmacologia , Água/química , Cicatrização
8.
Nanotechnology ; 32(1): 015101, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33043894

RESUMO

Electrospun composite nanofibrous scaffolds have been regarded as a potential carrier for local drug delivery to prevent tumor recurrence. Herein, a model drug (paclitaxel) was creatively loaded into lignin nanoparticles (PLNPs) and then encapsulated into the polymer of poly (vinyl alcohol)/polyvinyl pyrrolidone which has been fabricated into a composite nanofibrous membrane (PVA/PVP-PLNPs) for use as a drug carrier using the electrospinning technique. The fabricated PVA/PVP-PLNPs membranes exhibited good particle distribution, mechanical properties, thermal stability and biocompatibility. In vitro experiments showed that combining lignin nanoparticles by electrospinning not only improved the drug release profile, but also enhanced the hydrophilicity of nanofibrous membranes which was beneficial to cell adhesion and proliferation. Cellular experiments demonstrated that PVA/PVP-2%PLNPs membrane showed good cell inhibition ability, and the cell survival rate was only 21% at day 7. It indicates that the as-prepared PVA/PVP-PLNPs composite nanofibers are promising candidates for local anticancer therapy.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Portadores de Fármacos/química , Lignina/química , Paclitaxel/administração & dosagem , Álcool de Polivinil/química , Neoplasias do Colo do Útero/tratamento farmacológico , Antineoplásicos Fitogênicos/farmacologia , Feminino , Células HeLa , Humanos , Nanofibras/química , Paclitaxel/farmacologia , Povidona/química
9.
Nanotechnology ; 32(19): 195701, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33513589

RESUMO

The MXene combining high surface area, prominent biocompatibility, and wide near infrared (NIR) absorption has been recognized as one of the most promising materials for tumor therapy. The application of MXene in tumor therapy is negatively affected by the current design methods lack the control of size distribution and the great tendency to agglomerate as well as poor photodynamic therapy. To solve the above problems, we report a facile strategy to process Ti3C2 nanosheets into three-dimensional (3D) structure with honeycomb structure and anti-aggregation properties for synergistic therapy of chemotherapy, photothermal and photodynamic therapy. The 3D MXene is synthesized by spray drying, in which the MXene surface is oxidized to TiO2. The microspheres present prominent NIR light trigger photothermal effect and excellent NIR light photostability, which respond in an on-off manner. Moreover, the microspheres exhibit outstanding drug-loading capability of doxorubicin (DOX) as high as 87.3%, and substantial singlet oxygen generation (1O2) was shown under 808 nm laser and UV light irradiation. Our studies indicate that 3D MXene-DOX could effectively achieve Hela cells killing in vitro, which provides a multifunctional drug delivery platform as a prospective candidate for future combined cancer therapy.


Assuntos
Antineoplásicos , Sistemas de Liberação de Medicamentos/métodos , Microesferas , Nanoestruturas , Fotoquimioterapia/métodos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Nanoestruturas/química , Nanoestruturas/toxicidade
10.
Biomed Microdevices ; 22(4): 64, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32897447

RESUMO

A novel carbon nanotube-collagen@hydroxyapatite (CNT-Col@HA) composite with good mechanical and biological properties was fabricated successfully by a multi in situ synthesis process, which can be used to repair or replace the damaged bone tissues. The carbon nanotube (CNT)/hydroxyapatite (HA) composite powders were firstly synthesized by the in situ chemical vapor deposition method. After the acidification of CNTs, the collagen (Col) molecules were covalently grafted onto the surface of CNTs in situ by the formation of amide linkages, obtaining Col-encapsulated CNTs powders. And then, a HA layer was deposited in situ onto the Col-encapsulated CNTs to form HA- and Col-encapsulated CNTs, consequently the ideal CNT-Col@HA composite was fabricated by the powder metallurgy method, and its mechanical and biological properties were investigated. The results showed that, the multi in situ synthesis process ensured the homogeneous dispersion of CNTs in HA matrix, and via the intermediate layer of Col, the close chemical bonding between CNT reinforcements and HA matrix was obtained, thereby the flexural strength and fracture toughness of the in situ synthesized 3 wt.% CNT-Col@HA composite were increased by approximately 74.2% and 274.6% compared with those of pure HA bulk, and better cell adhesion, spreading and proliferation were also observed on the in situ synthesized CNT-Col@HA composites. Therefore, the obtained composites in this work have great potential to be applied as implant material in clinic.


Assuntos
Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Colágeno/química , Durapatita/química , Fenômenos Mecânicos , Nanotubos de Carbono/química , Adesão Celular/efeitos dos fármacos , Teste de Materiais
11.
Biomed Microdevices ; 22(2): 24, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32166408

RESUMO

The porous TiO2 coatings containing Ca/P/Ag were separately prepared on titanium (Ti) surface by one-step (micro-arc oxidation) and two-step methods (micro-arc oxidation and cathodic deposition), and then their surface morphology, composition, biological and antibacterial properties were compared. The results showed that the porous coatings containing Ca/P/Ag achieved by different methods showed similar surface morphology and elemental composition, however, by one-step method, silver existed in the coating as silver phosphate, while in the coatings prepared by two-step method, silver existed as metallic silver. Although both coatings showed excellent antibacterial property (the antimicrobial rate is over 99.9%), the surface coating prepared by one-step method had a more suitable release curve of Ag. In addition, the surface coating prepared by one-step method also presented better biological property, which was due to its enhanced surface roughness and hydrophilicity. Combining with its easy operation and long-term antibacterial property, its prospect for clinical application is more promising.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Cálcio/química , Fósforo/química , Prata/química , Titânio/química , Titânio/farmacologia , Eletrodos , Oxirredução , Porosidade , Propriedades de Superfície
12.
Nanotechnology ; 31(2): 025601, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31518998

RESUMO

In this study, a novel photocatalyst composed of N-doped TiO2 (N-TiO2) and (Ca, Y)F2:Yb3+, Tm3+ was prepared by simple dealloying followed by a hydrothermal method. The composite exhibits a homogeneous nanoporous structure consisting of large quantities of the spindle-like N-doped TiO2 nanorods, on which the (Ca, Y)F2:Yb3+, Tm3+ particles with a diameter of around 5 nm are uniformly dispersed. In addition, morphology and property of the N-TiO2 can be controlled by adjusting the dealloying period. Results show that a short immersion time leads to a small size, large surface area and low band gap. As a result, the N-TiO2/(Ca, Y)F2:Yb3+, Tm3+ composite after dealloying for 48 h (TiO2-48-C) exhibits higher degradation rates (65.6% for 10 h irradiation by 980 nm NIR) than others after dealloying for 60 h (TiO2-60-C) and 72 h (TiO2-72-C), indicating its excellent potential for practical applications.

13.
Nanotechnology ; 29(41): 415401, 2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30036189

RESUMO

A three-dimensionally (3D) ordered macro-/mesoporous TiO2 (3DOM-mTiO2) was synthesized via a simple solvothermal process. 3DOM-mTiO2 was used as a sulfur carrier for cathode materials in a lithium-sulfur (Li-S) battery. The orderly interconnected macro and mesopores structure within the macropore walls yield a large pore volume and high specific surface area in 3DOM-mTiO2, which improved the sulfur loading capacity of the material. The S/TiO2 composite was synthesized as a cathode material for lithium/sulfur battery, which initially produced a high capacity of 1089 mAh g-1 and retained a value of 703 mAh g-1 after 200 cycles. An initial current rate of 0.2 C was used, which was further increased up to 2.5 C when a reversible capacity of 651 mAh g-1 was obtained. The excellent electrochemical performance can be attributed to the 3D ordered macro-/mesoporous structure of TiO2, which physically confines the soluble lithium polysulfides and diminishes the sulfur volume expansion upon cycling. In addition, the strong electrostatic attraction between the Ti-O bond and polysulfide stimulates the performance via stronger adsorption of the electrochemical reaction products.

14.
Phys Chem Chem Phys ; 18(27): 18406-13, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27339120

RESUMO

The structure and properties of nanostructured materials formed upon deformation are determined to a great extent by the states of stress and strain and the regimes of deformation. The nanostructures and properties of the graphene nanoribbons (GNRs) subjected to severe twist deformation were studied using molecular dynamics (MD) simulations. The GNRs show superflexibility and withstanding severe twisting, which leads to GNR nanostructures transforming from flat to twisted and then getting thoroughly coiled and fail. The appearance of a decreasing Young's moduli of the GNRs was observed with increasing rotation in general. The chirality has little effect on the Young's moduli of flat GNRs, whereas the degree of the GNR aspect ratio does. The severely twisted GNRs follow a similar rule but with slightly decreased Young's moduli (∼0.1 TPa), which demonstrates that the twisted GNRs maintain their stiff nature. The electronic properties of the GNRs under severely twisted conditions also show slight changes studied by density-functional theory (DFT) simulations. The stable mechanical properties and structure changes of GNRs under severely twisted conditions makes them a good candidate in some polymers, enhancing the load transfer and interfacial bonding by adding the twisted GNRs.

15.
J Mater Sci Mater Med ; 25(1): 199-205, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24113889

RESUMO

Anodic oxidation was applied to produce nanostructures on the surface of titanium (Ti) implants. The bioactivity of the Ti implants was evaluated by simulated body fluid soaking test. The biocompatibility was investigated by in vitro cell culture test. The results showed that bone-like apatite was formed on the anodized Ti surface, but not on the as-polished Ti surface after immersion in simulated body fluid for 2 weeks. Cells cultured on the anodized Ti surface showed enhanced cell adhesion and proliferation, compared to those cultured on the as-polished Ti surface. Based on these results, it can be concluded that anodic oxidation improved the bioactivity and biocompatibility of Ti surface, which was attributed to the formation of nanostructures as well as the nanostructure induced high surface roughness and hydrophilicity.


Assuntos
Materiais Revestidos Biocompatíveis/química , Nanoestruturas/química , Próteses e Implantes , Titânio/química , Células 3T3 , Animais , Adesão Celular , Proliferação de Células , Células Cultivadas , Fluoretos/química , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Camundongos , Nanoporos/ultraestrutura , Nanoestruturas/ultraestrutura , Osseointegração , Oxirredução , Propriedades de Superfície
16.
Biomater Sci ; 12(2): 270-287, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38175154

RESUMO

Implantable bioelectrodes for regulating and monitoring biological behaviors have become indispensable medical devices in modern healthcare, alleviating pathological symptoms such as epilepsy and arrhythmia, and assisting in reversing conditions such as deafness and blindness. In recent years, developments in the fields of materials science and biomedical engineering have contributed to advances in research on implantable bioelectrodes. However, the foreign body reaction (FBR) is still a major constraint for the long-term application of electrodes. In this paper, four types of commonly used implantable bioelectrodes are reviewed, concentrating on their background, development, and a series of complications caused by FBR after long-term implantation. Strategies for resisting FBRs are then devised in terms of physics, chemistry, and nanotechnology. We analyze the major trends in the future development of implantable bioelectrodes and outline some promising research to optimize the long-term operational stability of electrodes. Although current implantable bioelectrodes have been able to achieve good biocompatibility, low impedance, and low mechanical mismatch and trauma, these devices still face the challenge of FBR. Resistance to FBR is still the key for the long-term effectiveness of bioelectrodes, and a better understanding of the mechanisms of FBR, as well as miniaturization, long-term passivation, and coupling with gene therapy may be the way forward for the next generation of implantable bioelectrodes.


Assuntos
Reação a Corpo Estranho , Próteses e Implantes , Humanos , Eletrodos , Nanotecnologia
17.
Biomater Adv ; 164: 213993, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39151271

RESUMO

Regarding its structural and mechanical adaptability to bone defects, 3D printed (3DP) Ti6Al4V scaffolds are widely used in orthopedics now, purposed to restore the function and mechanical stability of impaired bone. In scaffold fabrication, surface modification is acknowledged as a reliable strategy to enhance the interface interaction between 3DP Ti6Al4V scaffold and bone. Despite its advantage in bone-Ti6Al4V bonding improvement, surface modification lacks the ability to induce bone in-growth efficiently as expected. As an attempt to overcome this challenge, in the current work the inner voids of 3DP Ti6Al4V scaffold were occupied by a gelatin/chitosan porous matrix, purposed to act as a platform for guiding bone ingrowth. Firstly, the gelatin/chitosan matrix was prepared via freeze-drying using genipin as a crosslinker, resulting in a trabecular bone-like interconnected porous network characterized with a gelatin/chitosan ratio dependent swelling capability, degradation and model anti-bacterial drug release behavior. Besides of that, gelatin in the matrix was witnessed to accelerate biomineralization in simulated body fluid. Secondly, a formulated gelatin/chitosan matrix was embedded into 3DP Ti6Al4V scaffold to generate a composite scaffold capable of inducing bone in-growth. The followed studies showed gelatin/chitosan matrix can endow the scaffold with good biological and sustained drug release properties, along with minimal change to the compressive strength of the scaffold. The in vivo experiment results revealed that after 4 weeks of implantation, more new bone formation was witnessed in the inner structure of the composite scaffold than the 3DP Ti6Al4V scaffold, with the average bone volume fraction (BV/TV) value increased from 24.09 % to 46.08 %, the average trabecular bone thickness (Tb. Th) value increased from 0.118 mm to 0.278 mm. Therefore, it was confirmed an inner matrix in 3DP Ti6Al4V scaffold played an essential role in guiding bone in-growth.


Assuntos
Ligas , Quitosana , Gelatina , Alicerces Teciduais , Titânio , Gelatina/química , Quitosana/química , Titânio/química , Ligas/química , Animais , Alicerces Teciduais/química , Porosidade , Impressão Tridimensional , Osteogênese/efeitos dos fármacos , Engenharia Tecidual/métodos , Ratos
18.
Nanomaterials (Basel) ; 14(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38535646

RESUMO

In the treatment of various cancers, photodynamic therapy (PDT) has been extensively studied as an effective therapeutic modality. As a potential alternative to conventional chemotherapy, PDT has been limited due to the low Reactive Oxygen Species (ROS) yield of photosensitisers. Herein, a nanoplatform containing mesoporous Fe3O4@TiO2 microspheres was developed for near-infrared (NIR)-light-enhanced chemodynamical therapy (CDT) and PDT. Titanium dioxide (TiO2) has been shown to be a very effective PDT agent; however, the hypoxic tumour microenvironment partly affects its in vivo PDT efficacy. A peroxidase-like enzyme, Fe3O4, catalyses the decomposition of H2O2 in the cytoplasm to produce O2, helping overcome tumour hypoxia and increase ROS production in response to PDT. Moreover, Fe2+ in Fe3O4 could catalyse H2O2 decomposition to produce cytotoxic hydroxyl radicals within tumour cells, which would result in tumour CDT. The photonic hyperthermia of Fe3O4@TiO2 could not only directly damage the tumour but also improve the efficiency of CDT from Fe3O4. Cancer-killing effectiveness has been maximised by successfully loading the chemotherapeutic drug DOX, which can be released efficiently using NIR excitation and slight acidification. Moreover, the nanoplatform has high saturation magnetisation (20 emu/g), making it suitable for magnetic targeting. The in vitro results show that the Fe3O4@TiO2/DOX nanoplatforms exhibited good biocompatibility as well as synergetic effects against tumours in combination with CDT/PDT/PTT/chemotherapy.

19.
ACS Biomater Sci Eng ; 10(8): 5252-5264, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39038263

RESUMO

Developing a microenvironment-responsive drug delivery system (DDS) for the gastrointestinal system is of great interest to enhance drug efficiency and minimize side effects. Unfortunately, the rapid-flowing digestive juice in the gastrointestinal tract and the continuous contraction and peristalsis of the gastrointestinal tract muscle accelerate the elimination of drug carriers. In this study, a boric hydroxyl-modified mesoporous Mg(OH)2 drug carrier is prepared to prolong the drug retention time. Results show that the newly designed DDS presents high biocompatibility and can immediately turn the free polyhydric alcohol molecules into a gelation form. The in situ-formed gelation network presents high viscosity and can prevent the drug carriers from being washed away by the digestive juice in the gastrointestinal tract.


Assuntos
Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Trato Gastrointestinal , Géis , Trato Gastrointestinal/metabolismo , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Géis/química , Humanos , Viscosidade , Animais
20.
Small ; 9(7): 990-5, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23172657

RESUMO

Large-sized, 2D single crystals of perylene are grown by both solution-cast and physical vapor transport methods. The crystals have a atomically flat parallelogram morphology and the aspect ratios of the lateral extension compared to the thickness are up to 10(3) . The atomically flat feature leads to good interface contact, making a single-crystal field-effect transistor with higher mobility. The mobility of atomically flat crystals can be 10(3) -10(4) times higher than rough crystals.


Assuntos
Nanopartículas/química , Nanotecnologia/métodos , Perileno/química , Transistores Eletrônicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA