Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Sensors (Basel) ; 24(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000924

RESUMO

Increasing concerns about air quality due to fossil fuel combustion, especially nitrogen oxides (NOx) from marine and diesel engines, necessitate advanced monitoring systems due to the significant health and environmental impacts of nitrogen dioxide (NO2). In this study, a gas detection system based on the principle of the non-dispersive infrared (NDIR) technique is proposed. Firstly, the pyroelectric detector was developed by employing an ultra-thin LiTaO3 (LT) layer as the sensitive element, integrated with nanoscale carbon material prepared by wafer-level graphics technology as the infrared absorption layer. Then, the sensor was hermetically sealed using inert gas through energy storage welding technology, exhibiting a high detectivity (D*) value of 4.19 × 108 cm·âˆšHz/W. Subsequently, a NO2 gas sensor was engineered based on the NDIR principle employing a Micro Electro Mechanical System (MEMS) infrared (IR) emitter, featuring a light path chamber length of 1.5 m, along with integrated signal processing and software calibration algorithms. This gas sensor was capable of detecting NO2 concentrations within the range of 0-500 ppm. Initial tests indicated that the gas sensor exhibited a full-scale relative error of less than 0.46%, a limit of 2.8 ppm, a linearity of -1.09%, a repeatability of 0.47% at a concentration of 500 ppm, and a stability of 2% at a concentration of 500 ppm. The developed gas sensor demonstrated significant potential for application in areas such as industrial monitoring and analytical instrumentation.

2.
Sensors (Basel) ; 24(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38794053

RESUMO

Dissolved gases in the aquatic environment are critical to understanding the population of aquatic organisms and the ocean. Currently, laser absorption techniques based on membrane separation technology have made great strides in dissolved gas detection. However, the prolonged water-gas separation time of permeable membranes remains a key obstacle to the efficiency of dissolved gas analysis. To mitigate these limitations, we demonstrated direct measurement of dissolved gas using the evanescent-wave absorption spectroscopy of a tapered silica micro-fiber. It enhanced the analysis efficiency of dissolved gases without water-gas separation or sample preparation. The feasibility of this sensor for direct measurement of dissolved gases was verified by taking the detection of dissolved ammonia as an example. With a sensing length of 5 mm and a consumption of ~50 µL, this sensor achieves a system response time of ~11 min and a minimum detection limit (MDL) of 0.015%. Possible strategies are discussed for further performance improvement in in-situ applications requiring fast and highly sensitive dissolved gas sensing.

3.
Anal Chem ; 95(17): 6955-6961, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37083340

RESUMO

In this paper, a micro-quartz crystal tuning fork (M-QCTF) was first demonstrated for developing a low-cost, highly sensitive quartz tuning fork photodetector array for spectroscopic applications. A gas sensing system based on the M-QCTF photodetector and highly sensitive wavelength modulation spectroscopy was developed. Typically, an atmospheric greenhouse gas methane (CH4) molecule was selected as the target analyte for evaluating the M-QCTF and standard commercial QCTF detectivity. The results indicate that the M-QCTF photodetector exhibits ∼3.3 times sensitivity enhancement compared to the standard commercial QCTF. The long-term stability was evaluated by using the Allan deviation analysis method; a minimum detection limit of 1.2 ppm was achieved with an optimal integration time of 85 s, and the corresponding normalized noise equivalent absorption coefficient was calculated to be 4.45 × 10-10 cm-1 W/√Hz. Finally, a two-M-QCTF array detection scheme was experimentally demonstrated, and a signal-to-noise ratio enhancement factor of more than 1.7 times compared to that achieved using a single M-QCTF photodetector was realized, which proves a great potential for developing ultra-sensitive quartz tuning fork photodetector arrays for various applications.

4.
Opt Express ; 31(22): 36293-36303, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017784

RESUMO

We have theoretically investigated the size-dependent optoelectronic properties of InGaP/AlGaInP-based red micro-LEDs through an electro-optical-thermal coupling model. The model considers thermal effects due to current crowding near the electrodes, non-thermal efficiency droop due to electron leakage, and etch defects on the LED sidewall. Sidewall defects reduce the carrier concentration at the light-emitting surface's edge and exacerbate the current crowding effect. In addition, p-side electron leakage at high current densities is the leading cause of the efficiency droop of AlGaInP LEDs. In contrast, the effect of temperature on the overall efficiency degradation of LEDs is even more significant.

5.
Opt Express ; 29(3): 4405-4421, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33771019

RESUMO

This paper addresses the problem of inaccurate emissivity presets for multispectral temperature measurements of aero-engine turbine blades and proposes a narrow-band spectral window moving temperature inversion algorithm that does not rely on an assumed emissivity model. As the emissivity of the measured object changes slowly over the narrow spectral window, the temperature corresponding to the normalized spectral radiation intensity for each window in the set temperature range is calculated using the Mahalanobis distance coefficient. The temperature error is less than 1.33% relative to thermocouple measurements when using this algorithm to perform temperature inversion on the experimental spectrum curves for different types of alloy samples. Furthermore, a two-dimensional spectral temperature field measurement platform was built, and the surface temperature fields of alloy samples were reconstructed using the narrow-band spectral window moving algorithm. The proposed algorithm is shown to provide high-precision inversion of the temperature field without presetting the emissivity model, which gives a new processing concept for the application of infrared spectral temperature measurements.

6.
Opt Express ; 29(13): 20217-20228, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34266115

RESUMO

In this article, 2000 PPI red silicon-based AlGaInP micro-LED arrays were fabricated and investigated. The AlGaInP epilayer was transferred onto the silicon substrate via the In-Ag bonding technique and an epilayer lift-off process. The silicon substrate with a high thermal conductivity could provide satisfactory heat dissipation, leading to micro-LED arrays that had a stable emission spectrum with increasing current density from 20 to 420 A/cm2 along with a red-shift of the peak position from 624.69 to 627.12 nm (Δλ = 2.43 nm). Additionally, increasing the injection current density had little effect on the CIE (x, y) of the micro-LED arrays. Further, the I-V characteristics and light output power of micro-LED arrays with different pixel sizes demonstrated that the AlGaInP red micro-LED array on a silicon substrate had excellent electrical stability and optical output.

7.
Sensors (Basel) ; 21(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34372464

RESUMO

We have developed a rapid quartz enhanced spectrophone for carbon dioxide (CO2) measurement, in which the laser wavelength was tightly locked to a CO2 absorption line and a custom quartz tuning fork (QTF) operating at 12.5 kHz was employed. The intrinsic QTF oscillation-limited response time, as well as the optimal feedback interval, was experimentally investigated. By tightly locking the laser to the R(16) transition of CO2, we obtained a stable laser operation with its center wavelength variation kept within 0.0002 cm-1, merely three times the laser linewidth. The reported CO2 sensor achieved a detection limit of 7 ppm, corresponding to a normalized noise equivalent absorption coefficient (NNEA) of 4.7 × 10-9 W·cm-1·Hz-1/2, at a response time of 0.5 s. The detection limit can be further improved to 0.45 ppm at an integration time of 270 s, illustrating a good system stability. This spectrophone enables the realization of compact and fast-response gas sensors for many scenarios, where CO2 concentration from sub-ppm to hundreds of thousands of ppm is expected.

8.
Sensors (Basel) ; 21(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557382

RESUMO

By combining frequency-division multiplexing and normalized wavelength modulation spectroscopy, a robust remote multi-species sensor was developed and demonstrated for practical hydrocarbon monitoring. Independently modulated laser beams are combined to simultaneously interrogate different gas samples using an open-ended centimeter-size multipass cell. Gas species of interest are demodulated with the second harmonics to enhance sensitivity, and high immunity to laser power variation is achieved by normalizing to the corresponding first harmonics. Performance of the optical sensor was experimentally evaluated using methane (CH4) and acetylene (C2H2) samples, which were separated by a 3-km fiber cable from the laser source. Sub-ppm sensitivity with 1-s time resolution was achieved for both gas species. Moreover, even with large laser intensity fluctuations ranging from 0 to 6 dB, the noise can be kept within 1.38 times as much as that of a stable intensity case. The reported spectroscopic technique would provide a promising optical sensor for remote monitoring of multi hazardous gases with high robustness.

9.
Anal Chem ; 92(20): 14153-14163, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32955242

RESUMO

A compact multigas sensor system based on a single quartz crystal tuning fork (QCTF) and multifrequency synchronous modulation strategy is proposed for trace gas detection. To demonstrate the novel detection technique, three near-infrared continuous-wave (CW) distributed feedback (DFB) diode lasers with center wavelengths of near 1391, 1574, and 1653 nm and a standard 32 kHz QCTF were integrated for simultaneous detection of H2O, CO2, and CH4, respectively. Wavelength modulation spectroscopy with second harmonic detection (WMS-2f) was selected for enhancing sensitivity. Design of the sensor configuration and primary performance between the traditional single-frequency modulation and the proposed tri-frequency modulation were experimentally investigated and compared in detail. The results indicate that the proposed sensing technique has significant advantages of cost effectiveness, portability, and ease-of-use, and detection limits of 1.4, 353, and 3.1 ppm for simultaneously measuring H2O, CO2, and CH4, respectively, are obtained, corresponding to the normalized noise equivalent absorption (NNEA) coefficients of 2.65 × 10-10, 8.09 × 10-10, and 8.28 × 10-10 cm-1 W/√Hz, respectively. Moreover, the use of an erbium-doped fiber amplifier (EDFA) has been demonstrated as an effective method for sensitivity enhancement.

10.
Opt Express ; 28(5): 6320-6335, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32225883

RESUMO

A novel tempo-spatially mixed modulation imaging Fourier transform spectrometer based on a stepped micro-mirror has the advantages of high throughput, compactness, and stability. In this paper, we present a method of image- and spectrum-processing and performance evaluation, which is utilized to obtain a high-quality reconstructed image without stitching gaps and a reconstructed spectrum with significantly reduced noise and side-lobe oscillation. A theoretical model of instrument line shape and signal-to-noise ratio is established to verify the effectiveness of non-uniformity sampling correction and spectral resolution enhancement. Meanwhile, the performance of the instrument was evaluated combined with experimental results.

11.
Opt Express ; 28(2): 1279-1290, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32121842

RESUMO

Two types of ultra-broadband long wavelength infrared (LWIR) absorbers with small period and super thin thickness are designed. The absorption with high absorptivity and large bandwidth is achieved through combined propagating and localized surfaced plasmon resonances. We first design a three-layer absorber with a Ti-Ge-Ti configuration, the period of the structure is only 1.4 µm (nearly 1/8 of the center wavelength), the thickness of its dielectric is only 0.5 µm (1/22 of the center wavelength), and the average absorption is 87.9% under normal incident from 8µm to 14µm. Furthermore, the four-layer absorber with a Ti-Ge-Si3N4-Ti configuration is designed to obtain more average absorption increasing to 94.5% from 8 µm to 14µm under normal incident, the period of the structure increases to 1.6 µm and the total thickness of dielectric increases to 0.6µm. The proposed absorber is polarization-independent and possesses a good tolerance of incident angle. We calculate that the average absorption of the four-layer absorber for both TE- and TM-modes still exceeds 90% up to an incident angle of θ = 40° (90.7% for TE-mode, 91.9% for TM-mode), and exceed 80% up to an incident angle of θ = 60° (80.2% for TE-mode, 82.1% for TM-mode).

12.
Appl Opt ; 59(9): 2695-2700, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32225817

RESUMO

A dual-band metamaterial absorber based on local surface plasmon resonance is designed, which is composed of a periodic arrangement of stacked nanodisk structures. The structure unit consists of two dielectric layers and three metal layers. Based on the finite difference time domain method, under the condition of vertically incident plane light, two absorption peaks in the mid-wave infrared and long-wave infrared (MWIR/LWIR) are obtained, and the absorption is greater than 98%. The absorber has good incident state tolerance characteristics. We can modulate the MWIR/LWIR absorption peaks by changing the radius of the stacked disk structure, and MWIR and LWIR dual-band broadband absorption can be achieved by integrating different size elements in the plane. The average absorption is 71% for MWIR with 1.1 µm bandwidth from 3.2 to 4.3 µm and 88% for LWIR with 3 µm bandwidth from 8.5 to 11.5 µm. At the same time, the structure also has effective refractive index (RI) sensitivity characteristics. In the RI range of 1.8-2, the maximum RI sensitivity of the LWIR and the MWIR is 1085 nm/refractive index unit (RIU) and 1472 nm/RIU, respectively.

13.
Am J Emerg Med ; 38(7): 1475-1480, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32334895

RESUMO

BACKGROUND: In this meta-analysis, we investigated the success rate of subclavian venous catheterization (SVC) as well as the incidence of related complications when performed via the supraclavicular (SC) or traditional infraclavicular (IC) approaches. METHODS: Ignoring the original language, we identified and analyzed eight randomized controlled trials (RCTs) published on or before December 30, 2018, after searching the following five bibliographic databases: PubMed, Springer, Medline, EMBASE, and the Cochrane Library. All included studies compared the clinical safety and efficiency of the SC and IC approaches for SVC in adults. The Cochrane Collaboration's Risk of Bias Tool was used to evaluate the methodological quality of each RCT. Cannulation failure rates and the incidence of malposition were regarded as the primary outcome measures. Secondary outcome measures included cannulation access time and the incidence of pneumothorax and artery puncture. RESULTS: Failure rates were significantly lower for SVC via the SC approach than via the IC approach [odds ratio, 0.66; 95% confidence interval (CI), 0.47 to 0.93]. The SC approach was also associated with a decreased incidence of catheter malposition, relative to that observed for the IC approach [odds ratio, 0.24; 95% CI, 0.13 to 0.46]. The SC approach did not reduce the time required for cannulation [mean difference, -74.74; 95% CI, -157.80 to 8.33], and there were no differences in the incidence of artery puncture [odds ratio, 0.60; 95% CI, 0.29 to 1.23] or pneumothorax [odds ratio, 0.89; 95% CI, 0.33 to 2.40]. CONCLUSION: Our findings suggest that SVC via the SC approach should be utilized in adults.


Assuntos
Cateterismo Venoso Central/métodos , Veia Subclávia , Artérias/lesões , Cateterismo Venoso Central/efeitos adversos , Humanos , Pneumotórax/etiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Tempo
14.
Anal Chem ; 91(16): 10750-10756, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31313580

RESUMO

Vibrational spectroscopic imaging techniques, based on infrared absorption or Raman scattering, allow for noninvasive chemically specific visualization of biological systems. The infrared and Raman modalities with different selection rules provide complementary information. Specifically, infrared microscopy provides strong signals in the fingerprint region, but suffers from low spatial resolution. Raman microscopy provides submicrometer resolution, but requires a long acquisition time. We developed a system that combines the strengths of both techniques by integrating confocal Raman microspectroscopy to the recently developed mid-infrared photothermal microscopy. This hybrid system is capable of fast infrared photothermal imaging of living cells with submicrometer resolution to identify points of interest, followed by a full-spectrum Raman analysis of the identified objects. In addition, a fingerprint photothermal spectrum can be acquired by scanning the wavelengths of the infrared laser. Comprehensive vibrational fingerprint mapping of live cells, demonstrated in adipocytes and single bacteria, promises broad applications of this technology in biology and material science.


Assuntos
Imagem Óptica , Análise de Célula Única , Células 3T3-L1 , Animais , Camundongos , Microscopia de Fluorescência , Análise Espectral Raman
15.
Appl Opt ; 58(31): 8383-8389, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31873318

RESUMO

This paper reports on the design and fabrication of a ${48} \times {48}$48×48 full-color pixelated addressable light-emitting diode on silicon (LEDoS) micro display. The metallization pattern was designed and fabricated on a silicon substrate, while red, green, and blue monochromatic micro LEDs were integrated on the silicon substrate using transfer printing. The red, green, and blue micro LEDs are flip-chip structures in which red micro LEDs were fabricated using substrate transfer, mesa etching, metal deposition, and chip dicing. The integration process does not require wire bonding, which reduces the full-color pixel size and increases the integration speed. The LEDoS micro display can be addressed individually for each LED pixel and display representative patterns.

16.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(5): 1554-9, 2016 May.
Artigo em Zh | MEDLINE | ID: mdl-30001062

RESUMO

To realize the static state and high throughput of Fourier transform imaging spectrometer (FTIS), a temporal spatial mixed modulated FTIS based on multi-micro-mirror was put forward in this paper, whose interference system was based on Michelson interferometer with a multi-micro-mirror to replace the plane mirror. The remarkable characteristics of this FTIS were no movable parts and slit existing in this system, and the interferogram and image of object could be gained at the same time. The fore-optics system imaged the object on the plane mirror and multi-micro-mirror of the interference system, due to the structure feature of multi-micro-mirror, the optical path difference (OPD) of two imaging beam could be modulated. Through the reimaging system, the image of object with different interference order could be obtained. By means of the analysis to the spectrum signal-to-noise ratio (SNR) of interference system, the relationship between spectrum SNR and image SNR was definite, and the characteristic parameters of multi-micro-mirror were determined. To ensure the constancy of OPD corresponding to each step plane, by means of the analysis to the imaging process of fore-optics system, the optical path structure of telecentric in image space was determined. According to the calculation of the relationship between field of view and OPD, the design indexes of fore-optics system were determined and the optical design was completed. To ensure no extra OPD was introduced by reimaging system, through the analysis of the imaging feature by reimaging system, the optical path structure of double telecentric was determined. According to the calculation of the relationship between incidence aperture angle and step number, the optical system that satisfied the system requirement was designed. By means of the theory analysis and optical design to each unit system, this research can provide a novel development strategy for static and high throughput FTIS.

17.
Opt Lett ; 39(16): 4911-4, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25121906

RESUMO

A novel static medium wave infrared (MWIR) imaging Fourier transform spectrometer (IFTS) is conceptually proposed and experimentally demonstrated. In this system, the moving mirror in traditional temporally modulated IFTS is replaced by multi-step micro-mirrors to realize the static design. Compared with the traditional spatially modulated IFTS, they have no slit system and are superior with larger luminous flux and higher energy efficiency. The use of the multi-step micro-mirrors can also make the system compact and light.

18.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(1): 103-7, 2014 Jan.
Artigo em Zh | MEDLINE | ID: mdl-24783542

RESUMO

The authors proposed a new Raman peak recognition method named bi-scale correlation algorithm. The algorithm uses the combination of the correlation coefficient and the local signal-to-noise ratio under two scales to achieve Raman peak identification. We compared the performance of the proposed algorithm with that of the traditional continuous wavelet transform method through MATLAB, and then tested the algorithm with real Raman spectra. The results show that the average time for identifying a Raman spectrum is 0.51 s with the algorithm, while it is 0.71 s with the continuous wavelet transform. When the signal-to-noise ratio of Raman peak is greater than or equal to 6 (modern Raman spectrometers feature an excellent signal-to-noise ratio), the recognition accuracy with the algorithm is higher than 99%, while it is less than 84% with the continuous wavelet transform method. The mean and the standard deviations of the peak position identification error of the algorithm are both less than that of the continuous wavelet transform method. Simulation analysis and experimental verification prove that the new algorithm possesses the following advantages: no needs of human intervention, no needs of de-noising and background removal operation, higher recognition speed and higher recognition accuracy. The proposed algorithm is operable in Raman peak identification.

19.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(1): 274-8, 2014 Jan.
Artigo em Zh | MEDLINE | ID: mdl-24783575

RESUMO

Collimation system provides collimated light for the static Fourier-transform spectroscopy (SFTS). Its quality is crucial to the signal to noise ratio (SNR) of SFTS. In the present paper, the physical model of SFTS was established based on the Fresnel diffraction theory by means of numerical software. The influence of collimation system on the SFTS was discussed in detail focusing on the aberrations of collimation lens and the quality of extended source. The results of simulation show that the influences of different kinds of aberrations on SNR take on obvious regularity, and in particular, the influences of off-axis aberrations on SNR are closely related to the location of off-axis point source. Finally the extended source's maximum radius allowed was obtained by simulation, which equals to 0.65 mm. The discussion results will be used for the design of collimation system.

20.
Front Med (Lausanne) ; 11: 1387433, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638936

RESUMO

Background: The aim of this study was to evaluate the ability of point-of-care Doppler ultrasound measurements of carotid corrected flow time and its changes induced by volume expansion to predict fluid responsiveness in patients undergoing robot-assisted gynecological surgery. Methods: In this prospective study, carotid corrected flow time was measured using Doppler images of the common carotid artery before and after volume expansion. The stroke volume index at each time point was recorded using noninvasive cardiac output monitoring with MostCare. Of the 52 patients enrolled, 26 responded. Results: The areas under the receiver operating characteristic curves of the carotid corrected flow time and changes in carotid corrected flow time induced by volume expansion were 0.82 and 0.67, respectively. Their optimal cut-off values were 357 and 19.5 ms, respectively. Conclusion: Carotid corrected flow time was superior to changes in carotid corrected flow time induced by volume expansion for predicting fluid responsiveness in this population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA