Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Nucl Med Mol Imaging ; 50(2): 387-397, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36194270

RESUMO

PURPOSE: Artificial intelligence (AI) has high diagnostic accuracy for coronary artery disease (CAD) from myocardial perfusion imaging (MPI). However, when trained using high-risk populations (such as patients with correlating invasive testing), the disease probability can be overestimated due to selection bias. We evaluated different strategies for training AI models to improve the calibration (accurate estimate of disease probability), using external testing. METHODS: Deep learning was trained using 828 patients from 3 sites, with MPI and invasive angiography within 6 months. Perfusion was assessed using upright (U-TPD) and supine total perfusion deficit (S-TPD). AI training without data augmentation (model 1) was compared to training with augmentation (increased sampling) of patients without obstructive CAD (model 2), and patients without CAD and TPD < 2% (model 3). All models were tested in an external population of patients with invasive angiography within 6 months (n = 332) or low likelihood of CAD (n = 179). RESULTS: Model 3 achieved the best calibration (Brier score 0.104 vs 0.121, p < 0.01). Improvement in calibration was particularly evident in women (Brier score 0.084 vs 0.124, p < 0.01). In external testing (n = 511), the area under the receiver operating characteristic curve (AUC) was higher for model 3 (0.930), compared to U-TPD (AUC 0.897) and S-TPD (AUC 0.900, p < 0.01 for both). CONCLUSION: Training AI models with augmentation of low-risk patients can improve calibration of AI models developed to identify patients with CAD, allowing more accurate assignment of disease probability. This is particularly important in lower-risk populations and in women, where overestimation of disease probability could significantly influence down-stream patient management.


Assuntos
Doença da Artéria Coronariana , Aprendizado Profundo , Imagem de Perfusão do Miocárdio , Humanos , Feminino , Doença da Artéria Coronariana/diagnóstico por imagem , Inteligência Artificial , Sensibilidade e Especificidade , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Perfusão , Imagem de Perfusão do Miocárdio/métodos , Angiografia Coronária
2.
Eur J Nucl Med Mol Imaging ; 50(9): 2656-2668, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37067586

RESUMO

PURPOSE: Patients with known coronary artery disease (CAD) comprise a heterogenous population with varied clinical and imaging characteristics. Unsupervised machine learning can identify new risk phenotypes in an unbiased fashion. We use cluster analysis to risk-stratify patients with known CAD undergoing single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). METHODS: From 37,298 patients in the REFINE SPECT registry, we identified 9221 patients with known coronary artery disease. Unsupervised machine learning was performed using clinical (23), acquisition (17), and image analysis (24) parameters from 4774 patients (internal cohort) and validated with 4447 patients (external cohort). Risk stratification for all-cause mortality was compared to stress total perfusion deficit (< 5%, 5-10%, ≥10%). RESULTS: Three clusters were identified, with patients in Cluster 3 having a higher body mass index, more diabetes mellitus and hypertension, and less likely to be male, have dyslipidemia, or undergo exercise stress imaging (p < 0.001 for all). In the external cohort, during median follow-up of 2.6 [0.14, 3.3] years, all-cause mortality occurred in 312 patients (7%). Cluster analysis provided better risk stratification for all-cause mortality (Cluster 3: hazard ratio (HR) 5.9, 95% confidence interval (CI) 4.0, 8.6, p < 0.001; Cluster 2: HR 3.3, 95% CI 2.5, 4.5, p < 0.001; Cluster 1, reference) compared to stress total perfusion deficit (≥10%: HR 1.9, 95% CI 1.5, 2.5 p < 0.001; < 5%: reference). CONCLUSIONS: Our unsupervised cluster analysis in patients with known CAD undergoing SPECT MPI identified three distinct phenotypic clusters and predicted all-cause mortality better than ischemia alone.


Assuntos
Doença da Artéria Coronariana , Imagem de Perfusão do Miocárdio , Masculino , Feminino , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Imagem de Perfusão do Miocárdio/métodos , Aprendizado de Máquina não Supervisionado , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Teste de Esforço/métodos , Prognóstico
3.
Eur J Nucl Med Mol Imaging ; 49(12): 4122-4132, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35751666

RESUMO

PURPOSE: We sought to evaluate inter-scan and inter-reader agreement of coronary calcium (CAC) scores obtained from dedicated, ECG-gated CAC scans (standard CAC scan) and ultra-low-dose, ungated computed tomography attenuation correction (CTAC) scans obtained routinely during cardiac PET/CT imaging. METHODS: From 2928 consecutive patients who underwent same-day 82Rb cardiac PET/CT and gated CAC scan in the same hybrid PET/CT scanning session, we have randomly selected 200 cases with no history of revascularization. Standard CAC scans and ungated CTAC scans were scored by two readers using quantitative clinical software. We assessed the agreement between readers and between two scan protocols in 5 CAC categories (0, 1-10, 11-100, 101-400, and > 400) using Cohen's Kappa and concordance. RESULTS: Median age of patients was 70 (inter-quartile range: 63-77), and 46% were male. The inter-scan concordance index and Cohen's Kappa for readers 1 and 2 were 0.69; 0.75 (0.69, 0.81) and 0.72; 0.8 (0.75, 0.85) respectively. The inter-reader concordance index and Cohen's Kappa (95% confidence interval [CI]) was higher for standard CAC scans: 0.9 and 0.92 (0.89, 0.96), respectively, vs. for CTAC scans: 0.83 and 0.85 (0.79, 0.9) for CTAC scans (p = 0.02 for difference in Kappa). Most discordant readings between two protocols occurred for scans with low extent of calcification (CAC score < 100). CONCLUSION: CAC can be quantitatively assessed on PET CTAC maps with good agreement with standard scans, however with limited sensitivity for small lesions. CAC scoring of CTAC can be performed routinely without modification of PET protocol and added radiation dose.


Assuntos
Doença da Artéria Coronariana , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Cálcio , Doença da Artéria Coronariana/diagnóstico por imagem , Eletrocardiografia , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X/métodos
4.
J Nucl Cardiol ; 29(4): 1754-1762, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35508795

RESUMO

Artificial intelligence (AI) techniques have emerged as a highly efficient approach to accurately and rapidly interpret diagnostic imaging and may play a vital role in nuclear cardiology. In nuclear cardiology, there are many clinical, stress, and imaging variables potentially available, which need to be optimally integrated to predict the presence of obstructive coronary artery disease (CAD) or predict the risk of cardiovascular events. In spite of clinical awareness of a large number of potential variables, it is difficult for physicians to integrate multiple features consistently and objectively. Machine learning (ML) is particularly well suited to integrating this vast array of information to provide patient-specific predictions. Deep learning (DL), a branch of ML characterized by a multi-layered convolutional model architecture, can extract information directly from images and identify latent image features associated with a specific prediction. This review will discuss the latest AI applications to disease diagnosis and risk prediction in nuclear cardiology with a focus on potential clinical applications.


Assuntos
Cardiologia , Aprendizado Profundo , Inteligência Artificial , Humanos , Aprendizado de Máquina
5.
J Nucl Cardiol ; 29(2): 727-736, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-32929639

RESUMO

BACKGROUND: Obese patients constitute a substantial proportion of patients referred for SPECT myocardial perfusion imaging (MPI), presenting a challenge of increased soft tissue attenuation. We investigated whether automated quantitative perfusion analysis can stratify risk among different obesity categories and whether two-view acquisition adds to prognostic assessment. METHODS: Participants were categorized according to body mass index (BMI). SPECT MPI was assessed visually and quantified automatically; combined total perfusion deficit (TPD) was evaluated. Kaplan-Meier and Cox proportional hazard analyses were used to assess major adverse cardiac event (MACE) risk. Prognostic accuracy for MACE was also compared. RESULTS: Patients were classified according to BMI: BMI < 30, 30 ≤ BMI < 35, BMI ≥ 35. In adjusted analysis, each category of increasing stress TPD was associated with increased MACE risk, except for 1% ≤ TPD < 5% and 5% ≤ TPD < 10% in patients with BMI ≥ 35. Compared to visual analysis, single-position stress TPD had higher prognostic accuracy in patients with BMI < 30 (AUC .652 vs .631, P < .001) and 30 ≤ BMI < 35 (AUC .660 vs .636, P = .027). Combined TPD had better discrimination than visual analysis in patients with BMI ≥ 35 (AUC .662 vs .615, P = .003). CONCLUSIONS: Automated quantitative methods for SPECT MPI interpretation provide robust risk stratification in the obese population. Combined stress TPD provides additional prognostic accuracy in patients with more significant obesity.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Imagem de Perfusão do Miocárdio , Doenças Cardiovasculares/diagnóstico por imagem , Doença da Artéria Coronariana/diagnóstico por imagem , Fatores de Risco de Doenças Cardíacas , Humanos , Imagem de Perfusão do Miocárdio/métodos , Obesidade/complicações , Obesidade/diagnóstico por imagem , Sistema de Registros , Fatores de Risco , Tomografia Computadorizada de Emissão de Fóton Único/métodos
6.
J Nucl Cardiol ; 29(5): 2393-2403, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35672567

RESUMO

BACKGROUND: Accurately predicting which patients will have abnormal perfusion on MPI based on pre-test clinical information may help physicians make test selection decisions. We developed and validated a machine learning (ML) model for predicting abnormal perfusion using pre-test features. METHODS: We included consecutive patients who underwent SPECT MPI, with 20,418 patients from a multi-center (5 sites) international registry in the training population and 9019 patients (from 2 separate sites) in the external testing population. The ML (extreme gradient boosting) model utilized 30 pre-test features to predict the presence of abnormal myocardial perfusion by expert visual interpretation. RESULTS: In external testing, the ML model had higher prediction performance for abnormal perfusion (area under receiver-operating characteristic curve [AUC] 0.762, 95% CI 0.750-0.774) compared to the clinical CAD consortium (AUC 0.689) basic CAD consortium (AUC 0.657), and updated Diamond-Forrester models (AUC 0.658, p < 0.001 for all). Calibration (validation of the continuous risk prediction) was superior for the ML model (Brier score 0.149) compared to the other models (Brier score 0.165 to 0.198, all p < 0.001). CONCLUSION: ML can predict abnormal myocardial perfusion using readily available pre-test information. This model could be used to help guide physician decisions regarding non-invasive test selection.


Assuntos
Imagem de Perfusão do Miocárdio , Humanos , Aprendizado de Máquina , Imagem de Perfusão do Miocárdio/métodos , Perfusão , Curva ROC , Tomografia Computadorizada de Emissão de Fóton Único/métodos
7.
J Nucl Cardiol ; 29(6): 3221-3232, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35174442

RESUMO

BACKGROUND: The utility of cardiac stress testing depends on the prevalence of myocardial ischemia within candidate populations. However, a comprehensive assessment of the factors influencing frequency of myocardial ischemia within contemporary populations referred for stress testing has not been performed. METHODS: We assessed 19,690 patients undergoing nuclear stress testing from a multicenter registry. The chi-square test was used to assess the relative importance of features for predicting myocardial ischemia. RESULTS: In the overall cohort, LVEF, male gender, and rest total perfusion deficit (TPD) were the top three predictors of ischemia, followed by CAD status, age, typical angina, and CAD risk factors. Myocardial ischemia was observed in 13.6 % of patients with LVEF > 55 %, in 26.2 % of patients with LVEF 45 %-54 %, and in 48.3% among patients with LVEF < 45 % (P < 0.001). A similar pattern was noted for rest TPD (P < 0.001). Men had a threefold higher frequency of ischemia versus women (25.8 % vs. 8.4%, P < 0.001). Although the relative ranking of ischemia predictors varied among centers, LVEF and/or rest TPD were among the two most potent predictors of myocardial ischemia within each center. CONCLUSION: The prevalence of myocardial ischemia varied markedly according to clinical and imaging characteristics. LVEF and rest TPD are robust predictors of myocardial ischemia.


Assuntos
Doença da Artéria Coronariana , Isquemia Miocárdica , Imagem de Perfusão do Miocárdio , Humanos , Masculino , Feminino , Prevalência , Tomografia Computadorizada de Emissão de Fóton Único , Isquemia Miocárdica/diagnóstico por imagem , Isquemia Miocárdica/epidemiologia , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/epidemiologia , Sistema de Registros , Imagem de Perfusão do Miocárdio/métodos
8.
J Nucl Cardiol ; 29(5): 2295-2307, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34228341

RESUMO

BACKGROUND: Stress-only myocardial perfusion imaging (MPI) markedly reduces radiation dose, scanning time, and cost. We developed an automated clinical algorithm to safely cancel unnecessary rest imaging with high sensitivity for obstructive coronary artery disease (CAD). METHODS AND RESULTS: Patients without known CAD undergoing both MPI and invasive coronary angiography from REFINE SPECT were studied. A machine learning score (MLS) for prediction of obstructive CAD was generated using stress-only MPI and pre-test clinical variables. An MLS threshold with a pre-defined sensitivity of 95% was applied to the automated patient selection algorithm. Obstructive CAD was present in 1309/2079 (63%) patients. MLS had higher area under the receiver operator characteristic curve (AUC) for prediction of CAD than reader diagnosis and TPD (0.84 vs 0.70 vs 0.78, P < .01). An MLS threshold of 0.29 had superior sensitivity than reader diagnosis and TPD for obstructive CAD (95% vs 87% vs 87%, P < .01) and high-risk CAD, defined as stenosis of the left main, proximal left anterior descending, or triple-vessel CAD (sensitivity 96% vs 89% vs 90%, P < .01). CONCLUSIONS: The MLS is highly sensitive for prediction of both obstructive and high-risk CAD from stress-only MPI and can be applied to a stress-first protocol for automatic cancellation of unnecessary rest imaging.


Assuntos
Doença da Artéria Coronariana , Imagem de Perfusão do Miocárdio , Algoritmos , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Humanos , Aprendizado de Máquina , Imagem de Perfusão do Miocárdio/métodos , Seleção de Pacientes , Perfusão , Tomografia Computadorizada de Emissão de Fóton Único/métodos
9.
J Nucl Cardiol ; 29(6): 3003-3014, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34757571

RESUMO

BACKGROUND: Diabetes mellitus (DM) is increasingly prevalent among contemporary populations referred for cardiac stress testing, but its potency as a predictor for major adverse cardiovascular events (MACE) vs other clinical variables is not well delineated. METHODS AND RESULTS: From 19,658 patients who underwent SPECT-MPI, we identified 3122 patients with DM without known coronary artery disease (CAD) (DM+/CAD-) and 3564 without DM with known CAD (DM-/CAD+). Propensity score matching was used to control for the differences in characteristics between DM+/CAD- and DM-/CAD+ groups. There was comparable MACE in the matched DM+/CAD- and DM-/CAD+ groups (HR 1.15, 95% CI 0.97-1.37). By Chi-square analysis, type of stress (exercise or pharmacologic), total perfusion deficit (TPD), and left ventricular function were the most potent predictors of MACE, followed by CAD and DM status. The combined consideration of mode of stress, TPD, and DM provided synergistic stratification, an 8.87-fold (HR 8.87, 95% CI 7.27-10.82) increase in MACE among pharmacologically stressed patients with DM and TPD > 10% (vs non-ischemic, exercised stressed patients without DM). CONCLUSIONS: Propensity-matched patients with DM and no known CAD have similar MACE risk compared to patients with known CAD and no DM. DM is synergistic with mode of stress testing and TPD in predicting the risk of cardiac stress test patients.


Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus , Imagem de Perfusão do Miocárdio , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Prognóstico , Diabetes Mellitus/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Sistema de Registros , Imagem de Perfusão do Miocárdio/métodos , Fatores de Risco
10.
J Nucl Cardiol ; 27(3): 1010-1021, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-29923104

RESUMO

BACKGROUND: We aim to establish a multicenter registry collecting clinical, imaging, and follow-up data for patients who undergo myocardial perfusion imaging (MPI) with the latest generation SPECT scanners. METHODS: REFINE SPECT (REgistry of Fast Myocardial Perfusion Imaging with NExt generation SPECT) uses a collaborative design with multicenter contribution of clinical data and images into a comprehensive clinical-imaging database. All images are processed by quantitative software. Over 290 individual imaging variables are automatically extracted from each image dataset and merged with clinical variables. In the prognostic cohort, patient follow-up is performed for major adverse cardiac events. In the diagnostic cohort (patients with correlating invasive angiography), angiography and revascularization results within 6 months are obtained. RESULTS: To date, collected prognostic data include scans from 20,418 patients in 5 centers (57% male, 64.0 ± 12.1 years) who underwent exercise (48%) or pharmacologic stress (52%). Diagnostic data include 2079 patients in 9 centers (67% male, 64.7 ± 11.2 years) who underwent exercise (39%) or pharmacologic stress (61%). CONCLUSION: The REFINE SPECT registry will provide a resource for collaborative projects related to the latest generation SPECT-MPI. It will aid in the development of new artificial intelligence tools for automated diagnosis and prediction of prognostic outcomes.


Assuntos
Imagem de Perfusão do Miocárdio/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Idoso , Inteligência Artificial , Automação , Angiografia Coronária , Doença da Artéria Coronariana/diagnóstico , Coleta de Dados , Bases de Dados Factuais , Feminino , Seguimentos , Humanos , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Prognóstico , Sistema de Registros , Reprodutibilidade dos Testes , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA