Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 23(22): 10512-10521, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37930183

RESUMO

Two-dimensional (2D) bismuthene is predicted to possess intriguing physical properties, but its preparation remains challenging due to the high surface energy constraint. Herein, we report a sandwiched epitaxy growth strategy for the controllable preparation of 2D bismuthene between a Cu foil substrate and a h-BN covering layer. The top h-BN layer plays a crucial role in suppressing the structural transformation of bismuthene and compensating for the charge transfer from the bismuthene to the Cu(111) surface. The bismuthene nanoflakes present a superior thermal stability up to 500 °C in air, attributed to the passivation effect of the h-BN layer. Moreover, the bismuthene nanoflakes demonstrate an ultrahigh faradaic efficiency of 96.3% for formate production in the electrochemical CO2 reduction reaction, which is among the highest reported for Bi-based electrocatalysts. This study offers a promising approach to simultaneously synthesize and protect 2D bismuthene nanoflakes, which can be extended to other 2D materials with a high surface energy.

2.
Nano Lett ; 23(1): 291-297, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36563295

RESUMO

Electrochemical conversion of CO2 into high-value-added chemicals has been considered a promising route to achieve carbon neutrality and mitigate the global greenhouse effect. However, the lack of highly efficient electrocatalysts has limited its practical application. Herein, we propose an ultrafast and green electric explosion method to batch-scale prepare spherical indium (In) nanocrystals (NCs) with abundant metal defects toward high selective electrocatalytic CO2 reduction (CO2RR) to HCOOH. During the electric explosion synthesis process, the Ar atmosphere plays a significant role in forming the spherical In NCs with abundant metal defects instead of highly crystalline In2O3 NCs formed under an air atmosphere. Analysis results reveal that the In NCs possess ultrafast catalytic kinetics and reduced onset potential, which is ascribed to the formation of rich metal defects serving as effective catalytic sites for converting CO2 into HCOOH. This work provides a feasible strategy to massively produce efficient In-based electrocatalysts for electrocatalytic CO2-to-formate conversion.

3.
Small ; 19(39): e2302650, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37264736

RESUMO

Metallic zinc (Zn) is a highly promising anode material for aqueous energy storage systems due to its low redox potential, high theoretical capacity, and low cost. However, rampant dendrites/by-products and torpid Zn2+ transfer kinetics at electrode/electrolyte interface severely threaten the cycling stability, which deteriorate the electrochemical performance of Zn-ion batteries. Herein, an interfacial engineering strategy to construct alkaline earth fluoride modified metal Zn electrodes with long lifespan and high capacity retention is reported. The compact fluoride layer is revealed to guide uniform Zn stripping/plating and accelerate the transfer/diffusion of Zn2+ via Maxwell-Wagner polarization. A series of in situ and ex situ spectroscopic studies verified that the fluoride layer can guide uniform Zn stripping/plating. Electrochemical kinetics analyses reveal that positive effect on the removal of Zn2+ solvation sheath provided by fluoride layer. Meanwhile, this fluoride coating layer can act as a barrier between the Zn electrode and electrolyte, providing a high electrode overpotential toward hydrogen evolution reaction to hold back H2 evolution. Consequently, the fluoride-modified Zn anode exhibited a capacity retention of 88.2% after 4000 cycles under10 A g-1 . This work opens up a new path to interface engineering for propelling the exploration of advanced rechargeable aqueous Zn-ion batteries.

4.
Small ; 18(9): e2104556, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34846791

RESUMO

As emerging 2D materials, arsenene and arsenic materials have attracted rising interest in the past few years. The diverse crystalline phases, exotic electrical characteristics, and widespread applications of 2D arsenene and arsenic bring them great research value and utilization potential. Herein, the recent progress of 2D arsenene and arsenic is reviewed in terms of fundamental properties, preparation, and applications. The fundamental properties of 2D arsenene and arsenic, including the crystal phases, environmental stability, and electrical structure, from theoretical to experimental reports are first summarized. Then, the experimental processes for preparing 2D arsenene and arsenic, along with their respective advantages and disadvantages, are introduced including epitaxial growth, mechanical exfoliation, and liquid-phase exfoliation. Moreover, applications of 2D arsenene and arsenic are discussed, suggesting a wide range of applications of 2D arsenene and arsenic in field-effect transistors, sensors, catalysts, biological applications, and so on. Finally, some perspectives about the challenges and opportunities of promising 2D arsenene and arsenic are provided. This review provides a helpful guidance and stimulates more focus on future explorations and developments of 2D arsenene and arsenic.


Assuntos
Arsênio , Catálise
5.
ACS Appl Mater Interfaces ; 14(40): 45137-45148, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36166745

RESUMO

Arsenene, a two-dimensional (2D) monoelemental layered nanosheet composed of arsenic, was recently reported to feature outstanding anticancer activities. However, the specific biological mechanism of action remains unknown. In this work, we extensively analyzed the mechanism of arsenene in vivo and in vitro and discovered the unexpected immune regulatory capability of arsenene for the first time. Analysis of cell phenotypes in tumor microenvironment by single-cell RNA sequencing revealed that arsenene remodeled the tumor microenvironment by recruiting a high proportion of anticancer immune cells to eliminate the tumor. Mechanistically, arsenene significantly activated T cell receptor signaling pathways to produce antitumor immune cells while inhibiting DNA replication and TCA cycle pathways of tumor cells in vivo. Further proteomic analysis on tumor cells revealed that arsenene induced reactive oxygen species production and oxidative stress damage by targeting thioredoxin TXNL1. The overloaded reactive oxygen species (ROS) further triggered endoplasmic reticulum stress responses to release damage-associated molecular patterns (DAMPs) and "eat-me" signals from dying tumor cells, leading to the activation of antigen-presenting processes to induce the subsequent effector tumor-specific CD8+ T cell immune responses. This unexpected discovery indicated for the first time that 2D inorganic nanomaterials could effectively activate direct anticancer immune responses, suggesting arsenene as a promising candidate nanomedicine for future cancer immunotherapy.


Assuntos
Arsênio , Neoplasias , Humanos , Neoplasias/metabolismo , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Receptores de Antígenos de Linfócitos T , Tiorredoxinas/farmacologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA