Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 143(22): 224113, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26671364

RESUMO

An atomistically informed mesoscale model is developed for the deposition of a discharge product in a Li-O2 battery. This mescocale model includes particle growth and coarsening as well as a simplified nucleation model. The model involves LiO2 formation through reaction of O2(-) and Li(+) in the electrolyte, which deposits on the cathode surface when the LiO2 concentration reaches supersaturation in the electrolyte. A reaction-diffusion (rate-equation) model is used to describe the processes occurring in the electrolyte and a phase-field model is used to capture microstructural evolution. This model predicts that coarsening, in which large particles grow and small ones disappear, has a substantial effect on the size distribution of the LiO2 particles during the discharge process. The size evolution during discharge is the result of the interplay between this coarsening process and particle growth. The growth through continued deposition of LiO2 has the effect of causing large particles to grow ever faster while delaying the dissolution of small particles. The predicted size evolution is consistent with experimental results for a previously reported cathode material based on activated carbon during discharge and when it is at rest, although kinetic factors need to be included. The approach described in this paper synergistically combines models on different length scales with experimental observations and should have applications in studying other related discharge processes, such as Li2O2 deposition, in Li-O2 batteries and nucleation and growth in Li-S batteries.

2.
J Phys Chem B ; 111(2): 358-62, 2007 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-17214486

RESUMO

The optimization of dye-sensitized solar cells, especially the design of nanoporous TiO2 film microstructure, is an urgent problem for high efficiency and future commercial applications. However, up to now, little attention has been focused on the design of nanoporous TiO2 microstructure for a high efficiency of dye-sensitized solar cell modules. The optimization and design of TiO2 photoelectrode microstructure are discussed in this paper. TiO2 photoelectrodes with three different layers, including layers of small pore size films, larger pore size films, and light-scattering particles on the conducting glass with the desirable thickness, were designed and investigated. Moreover, the photovoltaic properties showed that the different porosities, pore size distribution, and BET surface area of each layer have a dramatic influence on short-circuit current, open-circuit voltage, and fill factor of the modules. The optimization and design of TiO2 photoelectrode microstructure contribute a high efficiency of DSC modules. The photoelectric conversion efficiency around 6% with 15 x 20 cm2 modules under illumination of simulated AM1.5 sunlight (100 mW/cm2) and 40 x 60 cm2 panels with the same performance tested outdoor have been achieved by our group.


Assuntos
Corantes/química , Membranas Artificiais , Nanoestruturas/química , Titânio/química , Fontes de Energia Elétrica , Eletrodos , Desenho de Equipamento , Teste de Materiais , Tamanho da Partícula , Fotoquímica , Porosidade , Sensibilidade e Especificidade , Propriedades de Superfície
3.
J Phys Chem B ; 110(25): 12404-9, 2006 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-16800566

RESUMO

Porosity (P) of TiO2 film in dye-sensitized solar cells affects the light absorption coefficient and electron diffusion coefficient. A theoretical analytical expression of the intensity-modulated photocurrent spectroscopy (IMPS) response involving the light absorption coefficient and the electron diffusion coefficient as a function of the porosity has been proposed to investigate the influence of TiO2 film porosity on the characteristics of electron transport. The incident photon-to-current conversion efficiency (IPCE) and electron transit time depending on the porosity have been analyzed illuminating from both the electrolyte side (IE) and the substrate side (IS). The IPCE derived from the IMPS response reaches its maximum at a porosity of around 30% for IE and 41% for IS, respectively. Electron transit time increases with increasing the porosity for IE, while it declines when P < 0.41 for IS, which is attributable to the influence of the RC time constant. It has also been found that a larger RC time constant will lead to a longer transit time. The electron diffusion coefficient calculated from the transit time for IE corresponds to the results from the porosity reported in previous literature, which indicates that the dependence of the electron transit time tau(d) on the porosity is justifiable. The diffusion coefficient calculated for a larger RC time constant approaches the value from the literature when P > or = 0.41, while it is not practicable when P < 0.41 for IS.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(5 Pt 1): 051609, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23214795

RESUMO

A nonlinear phase-field model is proposed for modeling microstructure evolution during highly nonequilibrium processes. We consider electrochemical reactions at electrode-electrolyte interfaces leading to electroplating and electrode-electrolyte interface evolution. In contrast to all existing phase-field models, the rate of temporal phase-field evolution and thus the interface motion in the current model is considered nonlinear with respect to the thermodynamic driving force. It produces Butler-Volmer-type electrochemical kinetics for the dependence of interfacial velocity on the overpotential at the sharp-interface limit. At the low overpotential it recovers the conventional Allen-Cahn phase-field equation. This model is generally applicable to many other highly nonequilibrium processes where linear kinetics breaks down.


Assuntos
Cristalização/métodos , Eletrodos , Eletrólitos/química , Galvanoplastia/métodos , Modelos Químicos , Modelos Moleculares , Dinâmica não Linear , Simulação por Computador , Campos Eletromagnéticos , Transição de Fase , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA