Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
NPJ Digit Med ; 7(1): 196, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039218

RESUMO

Diabetic eye disease (DED) is a leading cause of blindness in the world. Annual DED testing is recommended for adults with diabetes, but adherence to this guideline has historically been low. In 2020, Johns Hopkins Medicine (JHM) began deploying autonomous AI for DED testing. In this study, we aimed to determine whether autonomous AI implementation was associated with increased adherence to annual DED testing, and how this differed across patient populations. JHM primary care sites were categorized as "non-AI" (no autonomous AI deployment) or "AI-switched" (autonomous AI deployment by 2021). We conducted a propensity score weighting analysis to compare change in adherence rates from 2019 to 2021 between non-AI and AI-switched sites. Our study included all adult patients with diabetes (>17,000) managed within JHM and has three major findings. First, AI-switched sites experienced a 7.6 percentage point greater increase in DED testing than non-AI sites from 2019 to 2021 (p < 0.001). Second, the adherence rate for Black/African Americans increased by 12.2 percentage points within AI-switched sites but decreased by 0.6% points within non-AI sites (p < 0.001), suggesting that autonomous AI deployment improved access to retinal evaluation for historically disadvantaged populations. Third, autonomous AI is associated with improved health equity, e.g. the adherence rate gap between Asian Americans and Black/African Americans shrank from 15.6% in 2019 to 3.5% in 2021. In summary, our results from real-world deployment in a large integrated healthcare system suggest that autonomous AI is associated with improvement in overall DED testing adherence, patient access, and health equity.

2.
Res Sq ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559222

RESUMO

Diabetic eye disease (DED) is a leading cause of blindness in the world. Early detection and treatment of DED have been shown to be both sight-saving and cost-effective. As such, annual testing for DED is recommended for adults with diabetes and is a Healthcare Effectiveness Data and Information Set (HEDIS) measure. However, adherence to this guideline has historically been low, and access to this sight-saving intervention has particularly been limited for specific populations, such as Black or African American patients. In 2018, the US Food and Drug Agency (FDA) De Novo cleared autonomous artificial intelligence (AI) for diagnosing DED in a primary care setting. In 2020, Johns Hopkins Medicine (JHM), an integrated healthcare system with over 30 primary care sites, began deploying autonomous AI for DED testing in some of its primary care clinics. In this retrospective study, we aimed to determine whether autonomous AI implementation was associated with increased adherence to annual DED testing, and whether this was different for specific populations. JHM primary care sites were categorized as "non-AI" sites (sites with no autonomous AI deployment over the study period and where patients are referred to eyecare for DED testing) or "AI-switched" sites (sites that did not have autonomous AI testing in 2019 but did by 2021). We conducted a difference-in-difference analysis using a logistic regression model to compare change in adherence rates from 2019 to 2021 between non-AI and AI-switched sites. Our study included all adult patients with diabetes managed within our health system (17,674 patients for the 2019 cohort and 17,590 patients for the 2021 cohort) and has three major findings. First, after controlling for a wide range of potential confounders, our regression analysis demonstrated that the odds ratio of adherence at AI-switched sites was 36% higher than that of non-AI sites, suggesting that there was a higher increase in DED testing between 2019 and 2021 at AI-switched sites than at non-AI sites. Second, our data suggested autonomous AI improved access for historically disadvantaged populations. The adherence rate for Black/African Americans increased by 11.9% within AI-switched sites whereas it decreased by 1.2% within non-AI sites over the same time frame. Third, the data suggest that autonomous AI improved health equity by closing care gaps. For example, in 2019, a large adherence rate gap existed between Asian Americans and Black/African Americans (61.1% vs. 45.5%). This 15.6% gap shrank to 3.5% by 2021. In summary, our real-world deployment results in a large integrated healthcare system suggest that autonomous AI improves adherence to a HEDIS measure, patient access, and health equity for patients with diabetes - particularly in historically disadvantaged patient groups. While our findings are encouraging, they will need to be replicated and validated in a prospective manner across more diverse settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA