Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
BMC Musculoskelet Disord ; 23(1): 985, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36380336

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) possess the potential to differentiate into chondrocytes, which makes them an ideal source for healing cartilage defects. Here, we seek to identify the essential genes participating in MSCs chondrogenesis. METHODS: Human MSCs were induced for chondrogenesis for 7, 14, and 21 days using a high-density micromass culture system, and RNA was extracted for RNA-seq. RESULTS: A total of 6247 differentially expressed genes (DEGs) were identified on day 7, and 85 DEGs were identified on day 14. However, no significant DEGs was identified on day 21. The top 30 DEGs at day 7, including COL9A3, COL10A1, and CILP2, are closely related to extracellular matrix organization. While the top 30 DEGs at day 14 revealed that inflammation-related genes were enriched, including CXCL8, TLR2, and CCL20. We also conducted protein-protein interaction (PPI) networks analysis using the search tool for the retrieval of interacting genes (STRING) database and identified key hub genes, including CXCL8, TLR2, CCL20, and MMP3. The transcriptional factors were also analyzed, identifying the top 5 TFs: LEF1, FOXO1, RORA, BHLHE41, and SOX5. We demonstrated one particular TF, RORA, in promoting early MSCs chondrogenesis. CONCLUSIONS: Taken together, our results suggested that these DEGs may have a complex effect on MSCs chondrogenesis both synergistically and solitarily.


Assuntos
Condrogênese , Células-Tronco Mesenquimais , Humanos , Condrogênese/genética , Receptor 2 Toll-Like , Diferenciação Celular/genética , Condrócitos , Células Cultivadas
2.
BMC Surg ; 22(1): 161, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538532

RESUMO

BACKGROUND: With the widespread use of the posterior surgery, more and more surgeons chose posterior surgery to treat thoracic and lumbar tuberculosis. But others still believed that the anterior surgery is more conducive to eradicating the lesions, and easier to place larger bone pieces for bone graft fusion. We compared the clinical and radiological outcomes of anterior and posterior surgical approaches and presented our views. METHODS: This study included 52 thoracic and lumbar tuberculosis patients at Sun Yat-sen Memorial Hospital from January 2010 to June 2018. All cases underwent radical debridement, nerve decompression, intervertebral bone graft fusion and internal fixation. Cases were divided into anterior group (24 cases) and posterior group (28 cases). Statistical analysis was used to compare the clinical effectiveness, radiological outcomes, complications and other related information. RESULTS: Patients in the anterior group and the posterior group were followed up for an average of 27.4 and 22.3 months, respectively. There were no statistically significant differences between groups in the preoperative, postoperative and last follow-up VAS score, ASIA grade and Cobb angle of local kyphosis. Moreover, there were no statistically significant differences in the improvement of neurological function, loss of kyphotic correction, total incidence of complications, operative time, intraoperative blood loss and hospital stay between the two groups (P > 0.05). But there was greater correction of kyphosis, earlier bone fusion, lower incidence of poor wound healing, less interference with the normal spine and less internal fixation consumables and medical cost in the anterior group (P < 0.05). CONCLUSIONS: Both anterior and posterior approaches are feasible for thoracic and lumbar tuberculosis. While for thoracic and lumbar tuberculosis patients with a single lesion limited in the anterior and middle columns of the spine without severe kyphosis, the anterior approach surgery may have greater advantages in kyphosis correction, bone fusion, wound healing, protection of the normal spine, and medical consumables and cost.


Assuntos
Cifose , Fusão Vertebral , Tuberculose da Coluna Vertebral , Estudos de Casos e Controles , Desbridamento , Humanos , Cifose/cirurgia , Vértebras Lombares/cirurgia , Estudos Retrospectivos , Vértebras Torácicas/cirurgia , Resultado do Tratamento , Tuberculose da Coluna Vertebral/cirurgia
3.
Exp Cell Res ; 388(2): 111838, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31930964

RESUMO

The receptor tyrosine kinase MET plays a vital role in skeletal muscle development and in postnatal muscle regeneration. However, the effect of MET on myogenesis of myoblasts has not yet been fully understood. This study aimed to investigate the effects of MET on myogenesis in vivo and in vitro. Decreased myonuclei and down-regulated expression of myogenesis-related markers were observed in Met p.Y1232C mutant heterozygous mice. To explore the effects of MET on myoblast proliferation and differentiation, Met was overexpressed or interfered in C2C12 myoblast cells through the lentiviral transfection. The Met overexpression cells exhibited promotion in myoblast proliferation, while the Met deficiency cells showed impediment in proliferation. Moreover, myoblast differentiation was enhanced by the stable Met overexpression, but was impaired by Met deficiency. Furthermore, this study demonstrated that SU11274, an inhibitor of MET kinase activity, suppressed myoblast differentiation, suggesting that MET regulated the expression of myogenic regulatory factors (MRFs) and of desmin through the classical tyrosine kinase pathway. On the basis of the above findings, our work confirmed that MET promoted the proliferation and differentiation of myoblasts, deepening our understanding of the molecular mechanisms underlying muscle development.


Assuntos
Diferenciação Celular , Proliferação de Células , Desenvolvimento Muscular , Mioblastos/citologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Animais , Células Cultivadas , Camundongos , Mioblastos/metabolismo
4.
Mediators Inflamm ; 2021: 9954909, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366712

RESUMO

Intervertebral disc degenerative disease (IDD) is the most common degenerative spine disease, which leads to chronic low back pain and symptoms in the lower extremities. In this study, we found that RORα, a member of the retinoid-related orphan receptor family, is significantly elevated in nucleus pulposus tissue in IDD patients. The elevation of RORα is associated with increased apoptosis of nucleus pulposus (NP) cells. Therefore, we applicated a well-established inverse agonist of RORα, SR3335, to investigate its role in regulating NP cell metabolism and apoptosis. To further investigate the mechanism that SR3335 regulates the pathogenesis of IDD in vitro, tumor necrosis factor alpha (TNF-α) stimulation was used in human NP cells to mimic the hostile environment that leads to degeneration. We found that SR3335 treatment reversed the trend of increased apoptosis in NP cells induced by TNF-α treatment. Next, TNF-α treatment upregulated the expression of type II collagen and aggrecan and downregulated MMP13 (matrix-degrading enzyme matrix metalloproteinase 13) and ADAMTS4 (a disintegrin and metalloproteinase with thrombospondin motifs 4). However, these effects were reversed after SR3335 treatment. Furthermore, we find that SR3335 mediated the effect in NP cells by regulating the YAP signaling pathway, especially by affecting the phosphorylation state of YAP. In conclusion, the reduction of matrix degradation enzymes and apoptosis upon SR3335 treatment suggests that SR3335 is a promising drug in reversing the deleterious microenvironment in IDD patients.


Assuntos
Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Núcleo Pulposo/metabolismo , Proteínas de Sinalização YAP/biossíntese , Proteína ADAMTS4/metabolismo , Idoso , Animais , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Colágeno Tipo II/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Metaloproteinase 13 da Matriz/metabolismo , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Fosforilação , Ratos , Ratos Sprague-Dawley , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
5.
Mol Med ; 25(1): 43, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462213

RESUMO

BACKGROUND: The protective effect of melatonin against bone metabolism imbalance in osteoporosis (OP) induced by drugs such as retinoic acid (RA) is unclear. The aim of this study was to explore the role of melatonin in bone destruction based on a mouse model. METHODS: RA-induced OP model mice were established. To assess the effect of melatonin on these mice, micro-CT was used to characterize the trabecular structure of normal mice and those treated with RA (model), RA + low-dose melatonin (Mlt-L), RA + high-dose melatonin (Mlt-H), and RA + alendronate sodium (positive control). The shape of the trabecular bone, the length and diameter of the femoral head and the height and diameter of vertebra(L1) of each group were also measured and the number of osteoclasts was determined by Tartrate-resistant acid phosphatase (TRACP) staining. Meanwhile, the expression of alkaline phosphatase (ALP) was evaluated by immunohistochemistry assays. The differences between groups in terms of liver and kidney oxidation-related indexes and serum and urinary indicators related to bone metabolism were also analyzed. Furthermore, qRT-PCR and western blotting were used to evaluate the effect of melatonin on osteogenic and osteoclastic differentiation in MC3T3-E1 and RAW264.7 cells, respectively. RESULTS: RA induction led to a decrease in the amount and density of trabecular bone, a decrease in the length and diameter of the femur and height, diameter of the vertebra (L1), a decrease in bone mass and density and the expression of ALP, and an increase in the number of osteoclasts. Melatonin treatment alleviated these effects induced by RA, increasing the amount of trabecular bone in OP mice, improving the microstructure of the femur and vertebra(L1) and increasing bone mass bone density and the expression of ALP, as well as decreasing the number of osteoclasts. Additionally, blood and urinary bone metabolism-related indicators showed that melatonin promoted bone formation and inhibited bone resorption. Determination of oxidant and antioxidant biomarkers in the livers and kidneys of the mice revealed that melatonin promoted the antioxidant level and suppressed the level of oxidant molecules in these organs. In vitro, RA promoted osteoclasts and inhibit osteogenesis by increasing oxidative stress levels in the RAW264.7 and MC3T3-E1 cells, but melatonin reversed this effect. Melatonin may, therefore, play a role in the ERK/SMAD and NF-κB pathways. CONCLUSIONS: Melatonin can alleviate bone loss in RA-induced OP model mice, repair the trabecular microstructure, and promote bone formation. These effects may be related to reducing oxidation levels in vivo and vitro through the ERK/SMAD and NF-κB pathways.


Assuntos
Remodelação Óssea/efeitos dos fármacos , Melatonina/farmacologia , Osteoporose , Tretinoína/efeitos adversos , Fosfatase Alcalina/metabolismo , Animais , Osso Esponjoso/citologia , Osso Esponjoso/efeitos dos fármacos , Osso Esponjoso/metabolismo , Feminino , Fêmur/citologia , Fêmur/efeitos dos fármacos , Fêmur/metabolismo , Camundongos , Osteoporose/induzido quimicamente , Osteoporose/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células RAW 264.7
7.
J Clin Invest ; 134(10)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512413

RESUMO

Elevated bone resorption and diminished bone formation have been recognized as the primary features of glucocorticoid-associated skeletal disorders. However, the direct effects of excess glucocorticoids on bone turnover remain unclear. Here, we explored the outcomes of exogenous glucocorticoid treatment on bone loss and delayed fracture healing in mice and found that reduced bone turnover was a dominant feature, resulting in a net loss of bone mass. The primary effect of glucocorticoids on osteogenic differentiation was not inhibitory; instead, they cooperated with macrophages to facilitate osteogenesis. Impaired local nutrient status - notably, obstructed fatty acid transportation - was a key factor contributing to glucocorticoid-induced impairment of bone turnover in vivo. Furthermore, fatty acid oxidation in macrophages fueled the ability of glucocorticoid-liganded receptors to enter the nucleus and then promoted the expression of BMP2, a key cytokine that facilitates osteogenesis. Metabolic reprogramming by localized fatty acid delivery partly rescued glucocorticoid-induced pathology by restoring a healthier immune-metabolic milieu. These data provide insights into the multifactorial metabolic mechanisms by which glucocorticoids generate skeletal disorders, thus suggesting possible therapeutic avenues.


Assuntos
Remodelação Óssea , Glucocorticoides , Osteogênese , Animais , Camundongos , Glucocorticoides/farmacologia , Osteogênese/efeitos dos fármacos , Remodelação Óssea/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 2/genética , Ácidos Graxos/metabolismo , Osso e Ossos/metabolismo , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/imunologia , Microambiente Celular/efeitos dos fármacos
8.
Front Surg ; 9: 1089244, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36969323

RESUMO

Low back pain is one of the top disorders that leads to disability and affects disability-adjusted life years (DALY) globally. Intervertebral disc degeneration (IDD) and subsequent discogenic pain composed major causes of low back pain. Recent studies have identified several important risk factors contributing to IDD's development, such as inflammation, mechanical imbalance, and aging. Based on these etiology findings, three categories of animal models for inducing IDD are developed: the damage-induced model, the mechanical model, and the spontaneous model. These models are essential measures in studying the natural history of IDD and finding the possible therapeutic target against IDD. In this review, we will discuss the technical details of these models, the duration between model establishment, the occurrence of observable degeneration, and the potential in different study ranges. In promoting future research for IDD, each animal model should examine its concordance with natural IDD pathogenesis in humans. We hope this review can enhance the understanding and proper use of multiple animal models, which may attract more attention to this disease and contribute to translation research.

9.
Int J Biol Sci ; 18(5): 2202-2219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35342351

RESUMO

Background: Intervertebral disc degeneration (IDD), the main cause of low back pain, is closely related to the inflammatory microenvironment in the nucleus pulposus (NP). Tumor necrosis factor-α (TNF-α) plays an important role in inflammation-related metabolic disturbance of NP cells. Melatonin has been proven to regulate the metabolism of NP cells, but whether it can protect NP cells from TNF-α-induced damage is still unclear. Therefore, this study aims to investigate the role and specific mechanism of melatonin on regulating the metabolism of NP cells in the inflammatory microenvironment. Methods: Western blotting, RT-qPCR and immunohistochemistry were used to detect the expression of melatonin membrane receptors (MTNR1A/B) and TNF-α in human NP tissues. In vitro, human primary NP cells were treated with or without vehicle, TNF-α and melatonin. And the metabolic markers were also detected by western blotting and RT-qPCR. The activity of NF-κB signaling and Hippo/YAP signaling were assessed by western blotting and immunofluorescence. Membrane receptors inhibitors, pathway inhibitors, lentiviral infection, plasmids transfection and immunoprecipitation were used to explore the specific mechanism of melatonin. In vivo, the rat IDD model was constructed and melatonin was injected intraperitoneally to evaluate its therapeutical effect on IDD. Results: The upregulation of TNF-α and downregulation of melatonin membrane receptors (MTNR1A/B) were observed in degenerative NP tissues. Then we demonstrated that melatonin could alleviate the development of IDD in a rat model and reverse TNF-α-impaired metabolism of NP cells in vitro. Further investigation revealed that the protective effects of melatonin on NP cells mainly rely on MTNR1B, which subsequently activates Gαi2 protein. The activation of Gαi2 could upregulate the yes-associated protein (YAP) level, resulting in anabolic enhancement of NP cells. In addition, melatonin-mediated YAP upregulation increased the expression of IκBα and suppressed the TNF-α-induced activation of the NF-κB pathway, thereby inhibiting the catabolism of NP cells. Conclusions: Our results revealed that melatonin can reverse TNF-α-impaired metabolism of NP cells via the MTNR1B/Gαi2/YAP axis and suggested that melatonin can be used as a potential therapeutic drug in the treatment of IDD.


Assuntos
Degeneração do Disco Intervertebral , Melatonina , Núcleo Pulposo , Animais , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/farmacologia , Humanos , Degeneração do Disco Intervertebral/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , Melatonina/uso terapêutico , NF-kappa B/metabolismo , Núcleo Pulposo/metabolismo , Ratos , Receptor MT2 de Melatonina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Oxid Med Cell Longev ; 2022: 9684062, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35915608

RESUMO

Unbalanced metabolism of an extracellular matrix (ECM) in nucleus pulposus cells (NPCs) is widely acknowledged as the primary cause of intervertebral disc degeneration (IDD). Irisin, a novel myokine, is cleaved from fibronectin type III domain-containing 5 (FNDC5) and has recently been proven to regulate the metabolism of ECM. However, little is known about its potential on NPCs and the development of IDD. Therefore, this study sought to examine the protective effects and molecular mechanism of irisin on IDD in vivo and in vitro. Decreased expression levels of FNDC5 and anabolism markers (COL2A1 and ACAN) but increased levels of catabolism markers (ADAMTS4) were found in degenerative nucleus pulposus (NP) tissues. In a punctured-induced rat IDD model, irisin treatment was found to significantly slow the development of IDD, and in TNF-α-stimulated NPCs, irisin treatment partly reversed the disorder of ECM metabolism. In mechanism, RNA-seq results suggested that irisin treatment affected the Hippo signaling pathway. Further studies revealed that with irisin treatment, the phosphorylation levels of key factors (LATS and YAP) were downregulated, while the expression level of CTGF was upregulated. Moreover, CTGF knockdown partially eliminated the protective effects of irisin on the metabolism of ECM in NPCs, including inhibiting the anabolism and promoting the catabolism. Taken together, this study demonstrated that the expression levels of FNDC5 were decreased in degenerative NP tissues, while irisin treatment promoted the anabolism, inhibited the catabolism of the ECM in NPCs, and delayed the progression of IDD via LATS/YAP/CTGF signaling. These results shed light on the protective actions of irisin on NPCs, leading to the development of a novel therapeutic target for treating IDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Animais , Ratos , Fator de Crescimento do Tecido Conjuntivo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Proteínas de Sinalização YAP
12.
World J Clin Cases ; 9(13): 3120-3129, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33969099

RESUMO

BACKGROUND: We report a case of Intracardiac, pulmonary, and intravenous cement embolism after cement-augmented pedicle screw instrumentation in treating spondylolisthesis underlying osteoporotic bone, which was successfully managed by conservative treatment. We describe the treatment and outcome of the patient, hoping to shed light on the management of bone cement embolism. CASE SUMMARY: A 67-year-old female suffered from progressive low back pain and numbness in lower extremities for 30 years. She was diagnosed with L4 and L5 spondylolisthesis, spinal stenosis, and osteoporosis. The patient underwent spinal canal decompression, an interbody fusion of L4/5 and L5/S1, cement-augmented pedicle screw instrumentation in L4-L5 segments, and regular pedicle screw in S1 segments. Three days postoperatively, a sudden drop in oxygen saturation occurred. Computerized tomography scan confirmed Intracardiac, pulmonary, and intravenous embolism. The patient was treated conservatively by continuous low-flow oxygen inhalation, anti-coagulation, and antibiotic therapy for 1 mo and continued anticoagulation treatment for 6 mo. The patient showed no further symptoms in a 30-mo follow-up. CONCLUSION: Intracardiac, pulmonary cement embolism after cement-augmented pedicle screw instrumentation is extremely rare. Careful clinical and radiographic evaluation is required in multiple sites of bone cement embolism. Conservative treatment may be a primary consideration in scattered emboli without life-threatening conditions, but a clinical decision should be made on an individualized basis.

13.
Cell Death Dis ; 12(10): 886, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584074

RESUMO

Osteoarthritis (OA) is characterized by cartilage destruction, chronic inflammation, and local pain. Evidence showed that retinoic acid receptor-related orphan receptor-α (RORα) is crucial in cartilage development and OA pathogenesis. Here, we investigated the role and molecular mechanism of RORα, an important member of the nuclear receptor family, in regulating the development of OA pathologic features. Investigation into clinical cartilage specimens showed that RORα expression level is positively correlated with the severity of OA and cartilage damage. In an in vivo OA model induced by anterior crucial ligament transaction, intra-articular injection of si-Rora adenovirus reversed the cartilage damage. The expression of cartilage matrix components type II collagen and aggrecan were elevated upon RORα blockade. RNA-seq data suggested that the IL-6/STAT3 pathway is significantly downregulated, manifesting the reduced expression level of both IL-6 and phosphorylated STAT3. RORα exerted its effect on IL-6/STAT3 signaling in two different ways, including interaction with STAT3 and IL-6 promoter. Taken together, our findings indicated the pivotal role of the RORα/IL-6/STAT3 axis in OA progression and confirmed that RORα blockade improved the matrix catabolism in OA chondrocytes. These results may provide a potential treatment target in OA therapy.


Assuntos
Cartilagem Articular/patologia , Interleucina-6/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Idoso , Animais , Sequência de Bases , Benzamidas/química , Benzamidas/farmacologia , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Condrócitos/patologia , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Feminino , Fluorocarbonos/química , Fluorocarbonos/farmacologia , Humanos , Interleucina-6/genética , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/antagonistas & inibidores , Osteoartrite/genética , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Índice de Gravidade de Doença , Sulfonamidas/química , Sulfonamidas/farmacologia , Tiofenos/química , Tiofenos/farmacologia
14.
Stem Cell Res Ther ; 12(1): 150, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33632317

RESUMO

BACKGROUND: Little is known about the implications of circRNAs in the effects of melatonin (MEL) on bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation and osteoporosis (OP) progression. The aim of our study was to investigate circRNAs in MEL-regulated BMSC differentiation and OP progression. METHODS: BMSC osteogenic differentiation was measured by qRT-PCR, western blot (WB), Alizarin Red, and alkaline phosphatase (ALP) staining. Differential circRNA and mRNA profiles of BMSCs treated by MEL were characterized by deep sequencing, followed by validation using RT-PCR, Sanger sequencing, and qRT-PCR. Silencing and overexpression of circ_0003865 were conducted for functional investigations. The sponged microRNAs and targeted mRNAs were predicted by bioinformatics and validated by qRT-PCR, RNA pull-down, and dual-luciferase reporter assay. The function of miR-3653-3p and circ_0003865/miR-3653-3p/growth arrest-specific gene 1 (GAS1) cascade was validated for the osteogenic differentiation of BMSCs by CCK-8, qRT-PCR, WB, Alizarin Red, and ALP staining. The effects of circ_0003865 on OP development were tested in murine OP model. RESULTS: MEL promoted osteogenic differentiation of BMSCs. RNA sequencing revealed significant alterations in circRNA and mRNA profiles associated with multiple biological processes and signaling pathways. Circ_0003865 expression in BMSCs was significantly decreased by MEL treatment. Silencing of circ_0003865 had no effect on proliferation while promoted osteogenic differentiation of BMSCs. Overexpression of circ_0003865 abrogated the promotion of BMSC osteogenic differentiation induced by MEL, but proliferation of BMSCs induced by MEL had no change whether circ_0003865 was overexpression or not. Furthermore, circ_0003865 sponged miR-3653-3p to promote GAS1 expression in BMSCs. BMSC osteogenic differentiation was enhanced by miR-3653-3p overexpression while BMSC proliferation was not affected. By contrast, miR-3653-3p silencing mitigated the promoted BMSC osteogenic differentiation caused by circ_0003865 silencing, but had no effect on proliferation. Finally, circ_0003865 silencing repressed OP development in mouse model. CONCLUSION: MEL promotes BMSC osteogenic differentiation and inhibits OP pathogenesis by suppressing the expression of circ_0003865, which regulates GAS1 gene expression via sponging miR-3653-3p.


Assuntos
Melatonina , Células-Tronco Mesenquimais , MicroRNAs , Osteoporose , Animais , Proteínas de Ciclo Celular , Diferenciação Celular , Proteínas Ligadas por GPI , Melatonina/farmacologia , Camundongos , MicroRNAs/genética , Osteogênese , Osteoporose/genética
15.
Stem Cells Int ; 2019: 6403967, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31582985

RESUMO

Accumulation of reactive oxygen species (ROS), which can be induced by inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), can significantly inhibit the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). This process can contribute to the imbalance of bone remodeling, which ultimately leads to osteoporosis. Therefore, reducing the ROS generation during osteogenesis of BMSCs may be an effective way to reverse the impairment of osteogenesis. Melatonin (MLT) has been reported to act as an antioxidant during cell proliferation and differentiation, but its antioxidant effect and mechanism of action during osteogenesis of MSCs in the inflammatory microenvironment, especially in the presence of TNF-α, remain unknown and need further study. In our study, we demonstrate that melatonin can counteract the generation of ROS and the inhibitory osteogenesis of BMSCs induced by TNF-α, by upregulating the expression of antioxidases and downregulating the expression of oxidases. Meanwhile, MLT can inhibit the phosphorylation of p65 protein and block the degradation of IκBα protein, thus decreasing the activity of the NF-κB pathway. This study confirmed that melatonin can inhibit the generation of ROS during osteogenic differentiation of BMSCs and reverse the inhibition of osteogenic differentiation of BMSCs in vitro, suggesting that melatonin can antagonize TNF-α-induced ROS generation and promote the great effect of osteogenic differentiation of BMSCs. Accordingly, these findings provide more evidence that melatonin can be used as a candidate drug for the treatment of osteoporosis.

16.
Stem Cells Int ; 2019: 6568394, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32082385

RESUMO

Mesenchymal stem cells (MSCs) are promising candidates for tissue regeneration and disease treatment. However, long-term in vitro culture results in loss of MSC stemness. The inflammation that occurs at stem cell transplant sites (such as that resulting from TNF-α) is a contributing factor for stem cell treatment failure. Currently, there is little evidence regarding the protective role of melatonin with regard to the negative effects of TNF-α on the stemness of MSCs. In this study, we report a melatonin-based method to reduce the inflammatory effects on the stemness of bone marrow mesenchymal stem cells (BMMSCs). The results of colony formation assays, Alizarin red staining, western blotting, and reverse transcription-polymerase chain reactions suggest that melatonin can reverse the inflammatory damage caused by TNF-α treatment in the third, seventh, and tenth generations of primary BMMSCs (vs. control and the TNF-α-treated group). Meanwhile, a detailed analysis of the molecular mechanisms showed that the melatonin receptor and YAP signaling pathway are closely related to the role that melatonin plays in negative inflammatory effects against BMMSCs. In addition, in vivo experiments showed that melatonin could reverse the damage caused by TNF-α on bone regeneration by BMMSCs in nude mice. Overall, our results suggest that melatonin can reverse the loss of stemness caused by inflammatory factor TNF-α in BMMSCs. Our results also provide a practical strategy for the application of BMMSCs in tissue engineering and cell therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA