Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Eur J Med Chem ; 266: 116149, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266554

RESUMO

The emergence of antibiotic resistance has brought a significant burden to public health. Here, we designed and synthesized a series of cannabidiol derivatives by biomimicking the structure and function of cationic antibacterial peptides. This is the first report on the design of cannabidiol derivatives as broad-spectrum antibacterial agents. Through the structure-activity relationship (SAR) study, we found a lead compound 23 that killed both Gram-negative and Gram-positive bacteria via a membrane-targeting mechanism of action with low resistance frequencies. Compound 23 also exhibited very weak hemolytic activity, low toxicity toward mammalian cells, and rapid bactericidal properties. To further validate the membrane action mechanism of compound 23, we performed transcriptomic analysis using RNA-seq, which revealed that treatment with compound 23 altered many cell wall/membrane/envelope biogenesis-related genes in Gram-positive and Gram-negative bacteria. More importantly, compound 23 showed potent in vivo antibacterial efficacy in murine corneal infection models caused by Staphylococcus aureus or Pseudomonas aeruginosa. These findings would provide a new design idea for the discovery of novel broad-spectrum antibacterial agents to overcome the antibiotic resistance crisis.


Assuntos
Antibacterianos , Canabidiol , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/química , Canabidiol/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Mamíferos , Testes de Sensibilidade Microbiana , Peptídeos/química , Peptídeos/farmacologia
2.
Eur J Med Chem ; 260: 115733, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37643545

RESUMO

Multidrug-resistant bacteria infections pose an increasingly serious threat to human health, and the development of antimicrobials is far from meeting the clinical demand. It is urgent to discover and develop novel antibiotics to combat bacterial resistance. Currently, the development of membrane active antimicrobial agents is an attractive strategy to cope with antimicrobial resistance issues. In this study, the synthesis and biological evaluation of cationic amphiphilic phenothiazine-based derivatives were reported. Among them, the most promising compound 30 bearing a n-heptyl group and two arginine residues displayed potent bactericidal activity against both Gram-positive (MICs = 1.56 µg/mL) and Gram-negative bacteria (MICs = 3.125-6.25 µg/mL). Compound 30 showed low hemolysis activity (HC50 = 281.4 ± 1.6 µg/mL) and low cytotoxicity (CC50 > 50 µg/mL) toward mammalian cells, as well as excellent salt resistance. Compound 30 rapidly killed bacteria by acting on the bacterial cell membrane and appeared less prone to resistance. Importantly, compound 30 showed potent in vivo efficacy in a murine model of bacterial keratitis. Hence, the results suggested compound 30 has a promising prospect as a broad-spectrum antibacterial agent for the treatment of drug-resistant bacterial infections.


Assuntos
Anti-Infecciosos , Antipsicóticos , Compostos Heterocíclicos , Humanos , Animais , Camundongos , Fenotiazinas/farmacologia , Bactérias , Antibacterianos/farmacologia , Arginina , Cátions , Mamíferos
3.
J Med Chem ; 65(20): 14221-14236, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36256884

RESUMO

Due to the emergence of antimicrobial resistance and the lack of new antibacterial agents, it has become urgent to discover and develop new antibacterial agents against multidrug-resistant pathogens. Antimicrobial peptides (AMPs) serve as the first line of defense for the host. In this work, we have designed, synthesized, and biologically evaluated a series of phenyl sulfide derivatives by biomimicking the structural features and biological functions of AMPs. Among these derivatives, the most promising compound 17 exhibited potent antibacterial activity against Gram-positive bacteria (minimum inhibitory concentrations = 0.39-1.56 µg/mL), low hemolytic activity (HC50 > 200 µg/mL), and high membrane selectivity. In addition, 17 can rapidly kill Gram-positive bacteria within 0.5 h through membrane-targeting action and avoid antibiotic resistance. More importantly, 17 showed high in vivo efficacy against Staphylococcus aureus in a murine corneal infection model. Therefore, 17 has great potential as a lead compound for the treatment of Gram-positive bacterial infections.


Assuntos
Anti-Infecciosos , Bactérias Gram-Positivas , Camundongos , Animais , Testes de Sensibilidade Microbiana , Antibacterianos/química , Cátions , Sulfetos/farmacologia , Sulfetos/uso terapêutico
4.
J Med Chem ; 65(24): 16754-16773, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36510819

RESUMO

Antibiotic resistance is emerging as a "global public health concern". To address the growing epidemic of multidrug-resistant pathogens, the development of novel antimicrobials is urgently needed. In this study, by biomimicking cationic antibacterial peptides, we designed and synthesized a series of new membrane-active nonivamide and capsaicin derivatives as peptidomimetic antimicrobials. Through modulating charge/hydrophobicity balance and rationalizing structure-activity relationships of these peptidomimetics, compound 51 was identified as the lead compound. Compound 51 exhibited potent antibacterial activity against both Gram-positive bacteria (MICs = 0.39-0.78 µg/mL) and Gram-negative bacteria (MICs = 1.56-6.25 µg/mL), with low hemolytic activity and low cytotoxicity. Compound 51 displayed a faster bactericidal action through a membrane-disruptive mechanism and avoided bacterial resistance development. Furthermore, compound 51 significantly reduced the microbial burden in a murine model of keratitis infected by Staphylococcus aureus or Pseudomonas aeruginosa. Hence, this design strategy can provide a promising and effective solution to overcome antibiotic resistance.


Assuntos
Anti-Infecciosos , Capsaicina , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA