Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Funct Integr Genomics ; 24(2): 62, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38514486

RESUMO

Long-wave sensitive (LWS) is a G protein-coupled receptor expressed in the retina, and zebrafish is a better model organism for studying vision, but the role of LWS1 in vision-guided behavior of larvae fish has rarely been reported. In this study, we found that zebrafish lws1 and lws2 are tandemly replicated genes, both with six exons, with lws1 being more evolutionarily conserved. The presence of Y277F in the amino acid sequence of lws2 may have contributed to the shift of λmax to green light. We established a lws1 knockout zebrafish model using CRISPR/Cas9 technology. Lws1-/- larvae showed significantly higher levels of feeding and appetite gene (agrp) expression than WT, and significantly lower levels of anorexia gene (pomc, cart) expression. In addition, green light gene compensation was observed in lws1-/- larvae with significantly increased expression levels of rh2-1. The light-dark movement test showed that lws1-/- larvae were more active under light-dark transitions or vibrational stimuli, and the expression of phototransduction-related genes was significantly up-regulated. This study reveals the important role of lws1 gene in the regulation of vision-guided behavior in larvae.


Assuntos
Opsinas dos Cones , Peixe-Zebra , Animais , Sequência de Aminoácidos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Opsinas dos Cones/genética , Comportamento Alimentar , Visão Ocular/genética
2.
Fish Physiol Biochem ; 50(1): 225-237, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37594622

RESUMO

The aim of this study was to investigate the effect of dietary vitamin A on juvenile Chinese perch (Siniperca chuatsi). Chinese perch were fed with five experimental diets containing 0, 20, 40, 60, and 80 mg VA·kg-1 for 8 weeks. Results showed that dietary vitamin A significantly influenced the fish's growth, feed utilization, glucose and lipid metabolism, appetite, and antioxidant capacity. Vitamin A-supplemented groups had higher weight gain rate (WGR) and specific growth rate (SGR) compared to the control group. Feed conversion ratio (FCR) was also lower in the vitamin A-supplemented groups. Dietary vitamin A had no significant effect on the survival rate (SR). Compared to the control group, fish fed with vitamin A had increased feed intake (FI), and the expression of appetite-promoting genes (npy and agrp) was significantly higher in the 40 mg VA·kg-1 group. Vitamin A also enhanced the utilization of dietary protein by Chinese perch. The serum glucose content of the fish fed with 40 mg VA·kg-1 diet was significantly higher than that of the control group and 20 mg VA·kg-1 diet, indicating that the promoting effect of VA on gluconeogenesis was greater than that on glycolysis. Additionally, dietary vitamin A increased the expression of lipid metabolism-related genes (hl and fas) and antioxidant genes (nrf2 and gpx) in the fish. These results suggest that the optimal vitamin A requirement of juvenile Chinese perch bream was estimated to be 37.32 mg VA·kg-1 based on broken-line regression analysis of WGR. In conclusion, this study provides valuable insights into the potential benefits of dietary vitamin A on the growth, metabolism, and antioxidant capacity of Chinese perch.


Assuntos
Antioxidantes , Percas , Animais , Antioxidantes/metabolismo , Metabolismo dos Lipídeos , Vitamina A/farmacologia , Vitamina A/metabolismo , Apetite , Glucose/metabolismo , Suplementos Nutricionais/análise , Dieta/veterinária , Ração Animal/análise
3.
Fish Physiol Biochem ; 50(3): 989-1002, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38321345

RESUMO

To alleviate amino acid imbalances in fermented soybean meal as a replacement for fishmeal feeds, this study evaluated the effects of adding lysine (Lys), methionine (Met), and α-ketoglutaric acid (AKG) to fermented soybean meals for Chinese perch. Chinese perch (34 ± 3 g) were fed five diets for 66 days (fishmeal as the protein source of the basal diet [FM]; fermented soybean meal as a substitute for 30% fishmeal in the soybean meal diet [FSM]; addition of crystalline Lys and Met [AA]; addition of α-ketoglutaric acid [AKG]; and simultaneous addition of crystalline Lys, Met, and AKG [BA] to the soybean meal diet). At the end of the feeding trial, the FSM group had the highest feeding rate and the lowest weight gain rate among all the groups. The FM group had the highest protein retention and the lowest feed efficiency among the groups. The mRNA transcription level of genes related to the AMP-activating protein (AMPK) signaling pathway and amino acid response (AAR) signaling pathway (lkb1, atf4, and gcn2) were highest in the AA group (P < 0.05) but lower in the AKG and BA groups. In the AKG group, the mRNA transcription level of the gluconeogenesis pathway-related gene (pepck and g6pase) was significantly higher than that in the other four groups, but the mRNA transcription level of genes related to amino acid catabolism (gdh and ampd) was lower. Among all the groups, the FSM group had the lowest mRNA transcription level of genes associated with the mammalian target of rapamycin (mTOR) signaling pathway (mtor and s6k). These findings imply that the feeding rate of Chinese perch in the fermented soybean meal group was the highest, but the protein retention was the lowest, while the addition of Lys, Met, and AKG improved protein retention. In conclusion, the addition of AKG to fermented soybean meal as a fishmeal substitute reduced amino acid deamination, enhanced gluconeogenesis, and increased protein deposition, which contributed to the growth of Chinese perch, alleviated amino acid imbalances, and improved the feed utilization of Chinese perch.


Assuntos
Ração Animal , Dieta , Glycine max , Ácidos Cetoglutáricos , Animais , Ração Animal/análise , Glycine max/química , Ácidos Cetoglutáricos/farmacologia , Ácidos Cetoglutáricos/administração & dosagem , Dieta/veterinária , Percas , Desaminação , Fermentação
4.
Fish Physiol Biochem ; 50(3): 1237-1249, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38517575

RESUMO

The dissolved oxygen (DO) and ammonia are crucial to the growth of Chinese perch (Siniperca chuatsi). Information on the effects of DO and total ammonia nitrogen (TAN) in regulating ammonia nitrogen excretion and flesh quality in Chinese perch is scanty. This study aimed to evaluate the effects of dissolved DO at oxygen levels of 3 mg/L and 9 mg/L, as well as the TAN concentrations of 0.3 mg/L and 0.9 mg/L on ammonia excretion and flesh quality. Results showed that the ammonia contents in plasma, muscle, and liver of the 9 mg/L DO group were significantly higher than those of the 3 mg/L DO group (P < 0.05). However, the expression of AMPK-related signaling pathway genes (gdh, lkb1, and ampd) and flesh quality indicators (gumminess, chewiness, hardness) in the 9 mg/L DO group were significantly lower than those in the 3 mg/L DO group. Under long-term exposure to 0.9 mg/L TAN, the ammonia contents in plasma and gill filaments, as well as muscle flesh quality (resilience, gumminess, chewiness, cohesiveness), were significantly lower than those in the 0.3 mg/L TAN group (P < 0.05). However, the activities of GDH and AMPD enzymes in the 0.9 mg/L TAN group were significantly higher than those in the 0.3 mg/L TAN group. In summary, when fish are exposed to 3 mg/L DO and 0.9 mg/L TAN in the environment for a long time, their amino acids are used for transamination and deamination, resulting in insufficient energy supply for Chinese perch, whereas 9 mg/L DO and 0.9 mg/L TAN caused deterioration of the flesh quality.


Assuntos
Amônia , Oxigênio , Percas , Transdução de Sinais , Animais , Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética
5.
J Cell Physiol ; 238(12): 2867-2878, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37850660

RESUMO

The melanocortin 4 receptor (MC4R) is a G protein-coupled transporter that mediates the regulation of thyroid hormones and leptin on energy balance and food intake. However, the mechanisms of transcriptional regulation of Mc4r by thyroid hormone and leptin in fish have been rarely reported. The messenger RNA expression of Mc4r gene was significantly higher in brain than those in other tissues of mandarin fish. We analyzed the structure and function of a 2029 bp sequence of Mc4r promoter. Meanwhile, overexpression of NKX2.1 and incubation with leptin significantly increased Mc4r promoter activity, but triiodothyronine showed the opposite effect. In addition, mutations in the NKX2.1 binding site abolished not only the activation of Mc4r promoter activity by leptin but also the inhibitory effect of thyroid hormones on Mc4r promoter activity. In summary, these results suggested that thyroid hormones and leptin might regulate the transcriptional expression of Mc4r through NKX2.1.


Assuntos
Peixes , Genes Homeobox , Leptina , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Peixes/genética , Peixes/metabolismo , Leptina/genética , Leptina/farmacologia , Regiões Promotoras Genéticas/genética , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Hormônios Tireóideos , Fator Nuclear 1 de Tireoide/genética , Fator Nuclear 1 de Tireoide/metabolismo , Humanos , Células HEK293
6.
Funct Integr Genomics ; 23(1): 67, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36840800

RESUMO

Carbohydrates are the most economical source of energy in fish feeds, but most fish have limited ability to utilize carbohydrates. It has been reported that phosphoenolpyruvate carboxykinase 1 (pck1) is involved in carbohydrate metabolism, lipid metabolism, and other metabolic processes. However, direct evidence is lacking to fully understand the relationship between pck1 and glucose and lipid metabolism. Here, we generated a pck1 knockout zebrafish by CRISPR/cas9 system, and a high-carbohydrate diet was provided to 60 days post-fertilization (dpf) for 8 weeks. We found that pck1-deficient zebrafish displayed decreased plasma glucose, elevated mRNA levels of glycolysis-related genes (gck, pfk, pk), and reduced the transcriptional levels of gluconeogenic genes (pck1, fbp1a) in liver. We also found decreased triglyceride, total cholesterol, and lipid accumulation and in pck1-/- zebrafish, along with downregulation of genes for lipolysis (acaca) and lipogenesis (cpt1). In addition, the observation of HE staining revealed that the total muscle area of pck1-/- was substantially less than that of WT zebrafish and real-time PCR suggested that GH/IGF-1 signaling (ulk2, stat1b) may be suppressed in pck1-deficient fish. Taken together, these findings suggested that pck1 may play an important role in the high-carbohydrate diet utilization of fish and significantly affected lipid metabolism and protein synthesis in zebrafish. pck1 knockout mutant line could facilitate a further mechanism study of pck1-associated metabolic regulation and provide new information for improving carbohydrate utilization traits.


Assuntos
Glucose , Fosfoenolpiruvato Carboxiquinase (GTP) , Peixe-Zebra , Animais , Glucose/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Nutrientes , Peixe-Zebra/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Proteínas de Peixe-Zebra/metabolismo
7.
Int J Mol Sci ; 24(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240129

RESUMO

The medaka (Oryzias latipes) is an excellent vertebrate model for studying the development of the retina. Its genome database is complete, and the number of opsin genes is relatively small compared to zebrafish. Short wavelength sensitive 2 (sws2), a G-protein-coupled receptor expressed in the retina, has been lost in mammals, but its role in eye development in fish is still poorly understood. In this study, we established a sws2a and sws2b knockout medaka model by CRISPR/Cas9 technology. We discovered that medaka sws2a and sws2b are mainly expressed in the eyes and may be regulated by growth differentiation factor 6a (gdf6a). Compared with the WT, sws2a-/- and sws2b-/- mutant larvae displayed an increase in swimming speed during the changes from light to dark. We also observed that sws2a-/- and sws2b-/- larvae both swam faster than WT in the first 10 s of the 2 min light period. The enhanced vision-guided behavior in sws2a-/- and sws2b-/- medaka larvae may be related to the upregulation of phototransduction-related genes. Additionally, we also found that sws2b affects the expression of eye development genes, while sws2a is unaffected. Together, these findings indicate that sws2a and sws2b knockouts increase vision-guided behavior and phototransduction, but on the other hand, sws2b plays an important role in regulating eye development genes. This study provides data for further understanding of the role of sws2a and sws2b in medaka retina development.


Assuntos
Oryzias , Animais , Oryzias/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Opsinas/genética , Opsinas de Bastonetes/genética , Retina/metabolismo , Mamíferos/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Fator 6 de Diferenciação de Crescimento
8.
Fish Physiol Biochem ; 49(5): 1017-1030, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37718352

RESUMO

An 84-day feeding experiment was conducted to investigate the effects of dietary Zn (zinc) on growth performance, food intake, and lipid metabolism of Chinese perch (Siniperca chuatsi). Five isonitrogenous and isolipidic diets with differential Zn contents (67, 100, 149, 230, and 410 mg/kg) were fed to 270 fish (35.47 ± 0.49 g). Results showed that fish growth and food intake increased markedly with the dietary 149 mg/kg Zn levels. Meanwhile, the food intake of 149 mg/kg group was significantly higher than that of other treatment groups after feeding for 8 weeks (P < 0.05). The qRT-PCR results showed that the expression of center appetite regulation factors in the hypothalamus was significantly regulated, and 149 mg/kg significantly increased mRNA expression of npy (neuropeptide Y) and decreased pomc (anorexigenic proopiomelanocortin) and cart (cocaine- and amphetamine-regulated transcript) gene expression. Meanwhile, the expressions of the main genes (such as leptin A and ghrelin) involved in peripheral appetite regulation factors were significantly up-regulated firstly and then reduced with the dietary Zn level increased, whereas the expression of cck (cholecystokinin) was significantly up-regulated. Serum AST (aspartate transaminase) and ALT (alanine transaminase) activities in fish fed the diets containing 230 and 410 mg/kg were significantly higher than that in other groups (P < 0.05). The lipid content of liver in 67 and 100 mg/kg groups was significantly higher than other groups (P < 0.05). Furthermore, dietary Zn significantly elevated the serum TG (triglyceride) and TCHO (total cholesterol) content levels (P < 0.05). Fish fed a high Zn diet (149, 230, and 410 mg/kg) dramatically down-regulated expression of srebp1 (sterol regulatory element binding proteins1c) and fas (fatty acid synthetase), but up-regulated expression of pparα (peroxisome proliferators-activated receptor-α) and cpt1 (carnitine palmitoyl transferase I) in the liver. The optimal dietary Zn inclusion level ranged from 146.69 to 152.86 mg/kg diet, based on two-slope broken-line regression analysis of WGR (weight gain rate) and FCR (feed conversion rate) for Chinese perch.


Assuntos
Apetite , Percas , Animais , Metabolismo dos Lipídeos/genética , Dieta/veterinária , Neuropeptídeo Y/genética , Zinco
9.
Fish Physiol Biochem ; 49(5): 801-813, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37495865

RESUMO

Color vision is mediated by the expression of different major visual pigment proteins (opsins) on retinal photoreceptors. Vertebrates have four classes of cone opsins that are most sensitive to different wavelengths of light: short wavelength sensitive 1 (SWS1), short wavelength sensitive 2 (SWS2), medium wavelength sensitive (RH2), and long wavelength sensitive (LWS). UV wavelengths play important roles in foraging and communication. However, direct evidence provide links between sws1 and first feeding is lacking. Here, CRISPR/Cas9 technology was performed to generate mutant zebrafish lines with sws1 deletion. sws1 mutant zebrafish larvae exhibited decreased sws1, rh2-2, and lws1 expression, and increased rod gene (rho and gnat1) expression. Furthermore, the sws1-deficient larvae exhibited significantly reduced food intake, and the orexigenic genes npy and agrp signaling were upregulated at 6 days postfertilization (dpf). The transcription expression of sws1 and rh2-3 genes decreased in sws1-/- adults compared to wild type. Surprisingly, the results of feeding at the adult stage were not the same with larvae. sws1 deficiency did not affect food intake and appetite gene expression at adult stages. These results reveal a role for sws1 in normal cone development and first feeding in larval zebrafish.


Assuntos
Opsinas dos Cones , Peixe-Zebra , Animais , Opsinas dos Cones/genética , Opsinas dos Cones/metabolismo , Opsinas/genética , Opsinas/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Filogenia , Células Fotorreceptoras Retinianas Cones , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
10.
Fish Physiol Biochem ; 49(6): 1063-1078, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37542702

RESUMO

This study aimed to assess the effect of pyridoxine supplementation in the mandarin fish diet on growth performance, protein and lipid metabolism, and liver and intestinal histology. Mandarin fish were fed six diets with different levels of pyridoxine (2.67 mg/kg (control), 4.41 mg/kg, 6.57 mg/kg, 10.25 mg/kg, 17.93 mg/kg, 33.12 mg/kg diet) for 8 weeks, and samples were collected for analysis. The findings demonstrated that feeding mandarin fish a diet with 6.57 mg/kg pyridoxine led to a significant increase in weight gain rate (WGR), protein efficiency ratio (PER), whole-body crude protein, whole-body crude lipid, serum protein, cholesterol (CHO), triacylglycerol (TG), high-density lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol (LDL-C), and alkaline phosphatase (ALP), as well as significantly lower serum glucose (GLU) and feed conversion ratio (FCR), compared to the control group (P < 0.05). Furthermore, we found a significant upregulation of the relative expression of genes associated with hepatic lipid oxidation and synthesis (hl, lpl, pparα, cpt1, cs, srebp1, and fas) and proteolysis (ast, alt, and gdh) in fish fed a diet containing 6.57 mg/kg pyridoxine (P < 0.05). Regarding the histological analysis, we observed a notable decrease in the quantity of intestinal mucus-secreting cells when the fish fed a diet containing 10.25 mg/kg pyridoxine (P < 0.05). These findings suggest that dietary pyridoxine supplementation promotes mandarin fish growth by improving the efficiency of protein and lipid utilization. Additionally, we used a broken-line regression analysis to estimate the optimal dietary pyridoxine requirement for mandarin fish in the range of 6.17-6.41 mg/kg based on WGR, FCR, and PER.


Assuntos
Dieta , Piridoxina , Animais , Piridoxina/farmacologia , Dieta/veterinária , Triglicerídeos/metabolismo , Peixes/metabolismo , Colesterol , Suplementos Nutricionais , Ração Animal/análise , Metabolismo dos Lipídeos
11.
Fish Physiol Biochem ; 49(6): 1097-1114, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37855970

RESUMO

To explore the potential benefits of dietary phospholipids (PLs) in fish glucose metabolism and to promote feed culture of Chinese perch (Siniperca chuatsi), we set up six diets to feed Chinese perch (initial mean body weight 37.01 ± 0.20 g) for 86 days, including: Control diet (CT), 1% (SL1), 2% (SL2), 3% (SL3), 4% (SL4) soybean lecithin (SL) and 2% (KO2) krill oil (KO) supplemental diets (in triplicate, 20 fish each). Our study found that the SL2 significantly improved the weight gain rate and special growth rate, but the KO2 did not. In addition, the SL2 diet significantly improved feed intake, which is consistent with the mRNA levels of appetite-related genes (npy, agrp, leptin A). Additionally, in the CT and SL-added groups, leptin A expression levels were nearly synchronized with serum glucose levels. Besides, the SL2 significantly upregulated expression levels of glut2, gk, cs, fas and downregulated g6pase in the liver, suggesting that it may enhance glucose uptake, aerobic oxidation, and conversion to fatty acids. The SL2 also maintained the hepatic crude lipid content unchanged compared to the CT, possibly by significantly down-regulating the mRNA level of hepatic lipase gene (hl), and by elevating serum low-density lipoprotein (LDL) level and intraperitoneal fat ratio in significance. Moreover, the serum high-density lipoprotein levels were significantly increased by PL supplementation, and the SL2 further significantly increased serum total cholesterol and LDL levels, suggesting that dietary PLs promote lipid absorption and transport. Furthermore, dietary SL at 1% level could enhance non-specific immune capacity, with serum total protein level being markedly higher than that in the CT group. In conclusion, it is speculated that the promotion of glucose utilization and appetite by 2% dietary SL could be linked. We suggest a 1.91% supplementation of SL in the diet for the best growth performance in juvenile Chinese perch.


Assuntos
Lecitinas , Percas , Animais , Lecitinas/farmacologia , Lecitinas/metabolismo , Glycine max , Leptina/metabolismo , Dieta/veterinária , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Glucose/farmacologia , Glucose/metabolismo , RNA Mensageiro/metabolismo
12.
Fish Shellfish Immunol ; 121: 265-275, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35026410

RESUMO

The aim of this study is to explore the effects of dietary bile acids (BAs) supplementation on lipid metabolism and gut health of Chinese perch (Siniperca chuatsi), and its possible mechanisms. Two isonitrogenous and isolipidic diets were formulated to supplement different levels of BAs (0 and 900 mg BAs kg-1 diet, respectively). All fish (Initial mean body weight: 171.29 ± 0.77g) were randomly divided into 2 groups (triplicate, 54 fish/group) and were fed with different experimental diets for 56 days, respectively. Dietary exogenous BAs supplementation at the concentration of 900 mg kg-1 significantly increased weight gain and survival rate, and decreased feed conversion ratio. BAs could inhibit lipid synthesis and promote lipid oxidation to reduce lipid deposition by activating farnesoid X receptor (FXR). Dietary BAs supplementation increased the abundance of Lactobacilli in Firmicutes, and the increase of Lactobacillus caused the increase of lactic acid level and the decrease of pH, which might be the reason for the gut villus length and gut wall high in this study. Dietary BAs supplementation increased the levels of catalase and superoxide dismutase and decreased the level of malondialdehyde in the gut and plasma, which might be contributed to the regulating the antioxidant stress phenotype of gut microbiota by the increased abundance of Firmicutes. Then it caused the increase of the globulin level in the plasma, meaning the enhancement of immune state. The increased immunity might also be thought to be responsible for increased survival rate. These results suggest dietary BAs reduce liver lipid deposition via activating FXR, and improve gut health by regulating gut microbiota in Chinese perch.


Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Metabolismo dos Lipídeos , Percas , Receptores Citoplasmáticos e Nucleares , Animais , Ácidos e Sais Biliares/administração & dosagem , China , Dieta/veterinária , Fígado/metabolismo , Percas/microbiologia , Aumento de Peso
13.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35743178

RESUMO

Regulation of food intake is associated with nutrient-sensing systems and the expression of appetite neuropeptides. Nutrient-sensing systems generate the capacity to sense nutrient availability to maintain energy and metabolism homeostasis. Appetite neuropeptides are prominent factors that are essential for regulating the appetite to adapt energy status. However, the link between the expression of appetite neuropeptides and nutrient-sensing systems remains debatable in carnivorous fish. Here, with intracerebroventricular (ICV) administration of six essential amino acids (lysine, methionine, tryptophan, arginine, phenylalanine, or threonine) performed in mandarin fish (Siniperca chuatsi), we found that lysine and methionine are the feeding-stimulating amino acids other than the reported valine, and found a key appetite neuropeptide, neuropeptide Y (NPY), mainly contributes to the regulatory role of the essential amino acids on food intake. With the brain cells of mandarin fish cultured in essential amino acid deleted medium (lysine, methionine, histidine, valine, or leucine), we showed that only lysine deprivation activated the general control nonderepressible 2 (GCN2) signaling pathway, elevated α subunit of eukaryotic translation initiation factor 2 (eIF2α) phosphorylation, increased activating transcription factor 4 (ATF4) protein expression, and finally induced transcription of npy. Furthermore, pharmacological inhibition of GCN2 and eIF2α phosphorylation signaling by GCN2iB or ISRIB, effectively blocked the transcriptional induction of npy in lysine deprivation. Overall, these findings could provide a better understanding of the GCN2 signaling pathway involved in food intake control by amino acids.


Assuntos
Neuropeptídeo Y , Neuropeptídeos , Aminoácidos/metabolismo , Animais , Fator de Iniciação 2 em Eucariotos/metabolismo , Peixes/metabolismo , Lisina , Metionina , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Neuropeptídeos/metabolismo , Transdução de Sinais , Valina
14.
Fish Physiol Biochem ; 48(1): 101-116, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34997383

RESUMO

An 8-week feeding trial was conducted to evaluate the effects of dietary carbohydrate to lipid (CHO:L) ratios on growth performance, body composition, serum biochemical indexes, lipid metabolism, and gene expression of central appetite regulating factors in Chinese perch (Siniperca chuatsi) (mean initial weight: 12.86 ± 0.10 g). Five isonitrogenous and isoenergetic diets (fish meal, casein as main protein sources) were formulated to contain different graded CHO:L ratio diets ranging from 0.12, 0.86, 1.71, 3.29, and 7.19. Each diet was assigned to triplicate groups of 18 experimental fish. Our results revealed that final body weight (FBW), weight gain rate (WGR), specific growth rate (SGR), and protein efficiency ratio (PER) increased with dietary CHO:L ratio from 0.12 to 1.71 and then decreased with further increases in dietary CHO:L ratio. A two-slope broken-line regression analysis based on WGR showed that the optimal dietary CHO:L level for maximum growth performance of fish was 1.60. Crude lipid and crude protein content in the liver and glycogen concentration in the muscle and liver were significantly influenced by the dietary CHO:L ratios (P < 0.05). The lowest crude lipid content in the liver was observed in fish fed the diet with a CHO:L ratio of 1.71(P < 0.05). Dietary CHO:L ratios significantly induced the glucose concentration of serum (P < 0.05). The relative expression levels of genes involved in lipid metabolism, such as srebp1 and fas in the liver, showed a trend of first decreased and then increased with the increase of dietary CHO:L ratio levels. Appropriate CHO:L ratio in the diet can effectively reduce the accumulation of liver fat. We observed in fish fed the 1.71 CHO:L ratio diet showed higher feed intake, up-regulated mRNA expression of neuropeptide Y (npy) and agouti gene-related protein (agrp), and down-regulated mRNA expression of cocaine- and amphetamine-regulated transcript (cart) and pro-opiomelanocorticoid (pomc) significantly as compared to control group. Thus, these results provide the theoretical basis for feed formulation to determine the appropriate CHO:L ratio requirement of Chinese perch.


Assuntos
Apetite , Carboidratos da Dieta , Metabolismo dos Lipídeos , Percas , Ração Animal/análise , Animais , China , Dieta/veterinária , Carboidratos da Dieta/metabolismo , Lipídeos/química , Fígado/metabolismo , Percas/crescimento & desenvolvimento , Percas/metabolismo , RNA Mensageiro/metabolismo
15.
Fish Physiol Biochem ; 48(6): 1619-1633, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36481836

RESUMO

The purpose of this study is to assess the effects of early high-carbohydrate stimulus on glucose metabolism in zebrafish (Danio rerio) over two generations and explore the mechanisms that explain those nutritional programming effects via epigenetic modifications. The larvae were delivered a high-carbohydrate diet (53.66%) that was used as an early nutritional stimulus from the first feeding to the end of the yolk sac (FF) and 5 days after yolk-sac exhaustion (YE). The larvae (F0) and their offspring (F1) were then both fed the control diet (22.69%) until adulthood (15 weeks), and they were challenged with a high-carbohydrate diet (35.36%) at the 16th week. The results indicated that early stimulus immediately raised the mRNA levels of genes involved in glycolysis and gluconeogenesis. At the end of F0 challenge, both treatment groups decreased the plasma glucose levels, increased the expression levels of glucokinase (gck), and inhibited the mRNA during gluconeogenesis. When challenged in F1, the glucose levels were lower in FF (F1), and the mRNA levels of phosphoenolpyruvate carboxykinase 1 (pck1) were decreased in FF (F1) and YE (F1). Besides, in both experimental groups (F0 and F1), the CpG island of pck1 maintained lower levels of hypermethylated expression from F0 adult, 24 h post-fertilization embryo, to F1 adult. In conclusion, these results indicated that an early high-carbohydrate stimulus could significantly reprogram glucose metabolism in adult zebrafish, that those modifications could be partially transmitted to the next generation, and that the DNA methylation of pck1 might work as a stable epigenetic marker to contribute to those processes.


Assuntos
Metilação de DNA , Peixe-Zebra , Animais , Peixe-Zebra/genética , Dieta , Glucose/metabolismo , Carboidratos , RNA Mensageiro/metabolismo
16.
BMC Genomics ; 22(1): 129, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33618656

RESUMO

BACKGROUND: As economical traits, food habits domestication can reduce production cost in aquaculture. However, the molecular mechanism underlying food habits domestication has remained elusive. Mandarin fish (Siniperca chuatsi) only feed on live prey fish and refuse artificial diets. In the present study, we domesticated mandarin fish to feed on artificial diets. The two groups were obtained, the fish did not eat artificial diets or ate artificial diets during all of the three domestication processes, named Group W or X, respectively. RESULTS: Using transcriptome and metabolome analysis, we investigated the differentially expressed genes and metabolites between the two groups, and found three common pathways related to food habit domestication, including retinol metabolism, glycerolipid metabolism, and biosynthesis of unsaturated fatty acids pathways. Furthermore, the western blotting and bisulfite sequencing PCR analysis were performed. The gene expression of TFIIF and histone methyltransferase ezh1 were significantly increased and decreased in the fish of Group X, respectively. The total DNA methylation levels of TFIIF gene and tri-methylation of histone H3 at lysine 27 (H3K27me3) were significantly higher and lower in the fish of Group X, respectively. CONCLUSION: It was speculated that mandarin fish which could feed on artificial diets, might be attributed to the lower expression of ezh1, resulting in the decreased level of H3K27me3 and increased level of DNA methylation of TFIIF gene. The high expression of TFIIF gene might up-regulate the expression of genes in retinol metabolism, glycerolipid metabolism and glycerophosphoric metabolism pathways. Our study indicated the relationship between the methylation of DNA and histone and food habits domestication, which might be a novel molecular mechanism of food habits domestication in animals.


Assuntos
Perciformes , Transcriptoma , Animais , Dieta , Domesticação , Comportamento Alimentar , Metaboloma , Perciformes/genética
17.
Fish Physiol Biochem ; 47(5): 1395-1403, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34286404

RESUMO

Improving carbohydrate utilization can contribute to sustainability of aquaculture. In order to explore the feedback mechanism of glucose homeostasis in fish, one control diet (25% carbohydrate and 40% protein), one relatively high carbohydrate diet named HG (42% carbohydrate and 40% protein), and one high dietary carbohydrate coupled with relatively low protein diet named HGP (42% carbohydrate and 25% protein) were fed to grass carp for 40 days. After the feeding trial, HG group impeded the food intake and growth performance of fish compared with the other two groups. Meanwhile, the serum glucose and insulin level were both significantly elevated under the condition of high carbohydrates intake when compared HG with control group. However, although no significant difference was observed in peripheral glucose or insulin between HG and HGP groups, fish fed with HGP diet increased growth performance and food intake compared with the HG group. Gene expression data indicated that fish selectively regulated the expressions of the cerebral anorexigenic genes (cart and pomc) to adapt to the HG and HGP intake. Therefore, the HGP diet with high carbohydrate and low protein was more suitable for grass carp feeding and growth when compared with the other two diets, possibly because the diet composition was closer to the natural food of this fish. In addition, the serum leptin level was highly consistent with changes in food intake and anorexigenic gene expressions when comparing the three experimental diets, indicating that leptin might be the key to mediate the feedback regulation of carbohydrates intake on food intake and appetite in fish.


Assuntos
Carpas , Insulinas , Animais , Apetite , Carboidratos da Dieta , Ingestão de Alimentos , Retroalimentação , Proteínas de Peixes , Glucose , Leptina
18.
Fish Physiol Biochem ; 47(6): 1893-1907, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34581919

RESUMO

Memory drove a critical process of feeding habit transformation in Chinese perch when they re-trained to eat dead prey fish. To investigate the regulatory mechanism of cAMP-response element-binding protein (CREB) signaling pathway on the memory of Chinese perch during feeding habit transformation, the phosphorylation levels of upstream signal proteins of CREB between the control group (trained once) and the experimental group (trained twice) were measured. The results illustrated that the re-training was correlated to phosphorylation of extracellular regulated protein kinase (ERK1/2) and calcium/calmodulin-dependent protein kinase II (CaMKII), and dephosphorylation of protein kinase A (PKA) of Chinese perch. Inhibition of ERK1/2-CREB pathway decreased the mRNA levels of memory-related genes ((fos-related antigen 2 (fra2), CCAAT enhancer-binding protein delta (c/ebpb), immediate-early gene zif268 (zif268), proto-oncogenes c-fos (c-fox) and synaptotagmin-IV (sytIV)) and mRNA levels of appetite-related genes (agouti-related peptide (agrp) and ghrelin), and activation of PP1-CREB pathway increased the phosphorylated levels of CREB, the mRNA levels of memory-related genes (fra2, c/ebpb, zif268, and c-fox), and the mRNA levels of appetite-related genes (pro-opiomelanocortin (pomc) and leptin) in primary brain cells of Chinese perch. The memory in Chinese perch feeding habit transformation was associated with the ERK1/2-CREB and PP1-CREB pathways, which could regulate the transcription of memory-related genes and appetite-related genes.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Comportamento Alimentar , Memória , Percas , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , RNA Mensageiro
19.
Fish Physiol Biochem ; 47(5): 1449-1465, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34324096

RESUMO

There are great differences in metabolic responses to different levels of carbohydrate among different carnivorous fish species. To explore metabolic responses of Chinese perch to moderate and high level of dietary carbohydrates, three diets containing 7.3% (LC), 17.5% (MC), and 27.5% (HC) of carbohydrates were provided to Chinese perch for 56 days. The results showed that MC and HC groups exhibited an increase in weight gain (WG) and hepatic glycogen content, and a decrease in feed conversion efficiency, compared with the LC group. The MC and HC groups also showed the increase in mRNA levels of phosphofructokinase and citrate synthase related to the aerobic oxidation pathway, which might be responsible for the increase in WG. Moreover, compared with the LC group, the HC group exhibited high levels of plasma indices (glucose, pyruvic acid, lactic acid, total triglyceride, total cholesterol, and low-density lipoprotein) and liver lipid resulting from the increased mRNA levels of fatty acid synthesis-related genes (ATP citrate lyase, acetyl-CoA carboxylase α, and fatty acid synthase), low level of crude protein caused by inhibition of TOR pathway, and liver damage induced by low antioxidant capacity and infiltration of inflammatory cells, but the MC group did not. The above results indicated that 17.5% dietary carbohydrate might be utilized effectively in Chinese perch and part carbohydrates were converted into glycogen to maintain glucose homeostasis; 27.5% dietary carbohydrate could not be fully utilized. The 27.5% carbohydrate diet induced the up-regulation of aerobic oxidation, glycogen synthesis, and fat synthesis pathways which might not be sufficient to maintain glucose homeostasis.


Assuntos
Carboidratos da Dieta , Percas , Animais , China , Glucose , Glicogênio , Fígado , RNA Mensageiro
20.
BMC Evol Biol ; 20(1): 25, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32046636

RESUMO

BACKGROUND: Taste is fundamental to diet selection in vertebrates. Genetic basis of sweet taste receptor in the shaping of food habits has been extensively studied in mammals and birds, but scarcely studied in fishes. Grass carp is an excellent model for studying vegetarian adaptation, as it exhibits food habit transition from carnivory to herbivory. RESULTS: We identified six sweet taste receptors (gcT1R2A-F) in grass carp. The four gcT1R2s (gcT1R2C-F) have been suggested to be evolved from and paralogous to the two original gcT1R2s (gcT1R2A and gcT1R2B). All gcT1R2s were expressed in taste organs and mediated glucose-, fructose- or arginine-induced intracellular calcium signaling, revealing they were functional. In addition, grass carp was performed to prefer fructose to glucose under a behavioral experiment. Parallelly, compared with gcT1R2A-F/gcT1R3 co-transfected cells, gcT1R2C-F/gcT1R3 co-transfected cells showed a higher response to plant-specific fructose. Moreover, food habit transition from carnivory to herbivory in grass carp was accompanied by increased gene expression of certain gcT1R2s. CONCLUSIONS: We suggested that the gene expansion of T1R2s in grass carp was an adaptive strategy to accommodate the change in food environment. Moreover, the selected gene expression of gcT1R2s might drive the food habit transition from carnivory to herbivory in grass carp. This study provided some evolutional and physiological clues for the formation of herbivory in grass carp.


Assuntos
Adaptação Biológica/genética , Carpas/genética , Herbivoria/genética , Receptores Acoplados a Proteínas G/genética , Paladar/genética , Aclimatação/genética , Animais , Carpas/classificação , Carpas/fisiologia , Comportamento Alimentar , Proteínas de Peixes/genética , Amplificação de Genes/fisiologia , Expressão Gênica , Mamíferos/genética , Papilas Gustativas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA