RESUMO
OBJECTIVE: Overweight and obesity among adolescents are grave public health issues around the world. Although the conditions that contribute to obesity have been extensively researched, little is known about how multiple conditions interact to cause overweight and obesity. The current study intends to investigate the histomorphic configuration pathways of several conditions of adolescent overweight and obesity by gender. METHOD: The data came from a social survey conducted in June 2021 in Changchun, Jilin Province, China. The sample collected was 14-year-old adolescents, including 167 boys and 137 girls. The school physicians examined the participants' weight and height, and questionnaires were used to collect risk indicators from adolescents, such as sleep duration, electronic screens times, consumption of sugary drinks and fried foods, and physical activity. Simultaneously, a Fuzzy Qualitative Comparative Analysis will be performed to investigate the combinations of diverse conditions. RESULT: We found that there is no determining necessary condition that, once present, directly determines that an individual is in a state of overweight and obesity. Simultaneously, this study revealed nine alternative configurational paths of overweight and obesity in teenagers of different genders, with a concordance of 0.805 for six male groupings and 0.916 for three female groupings. The outcomes of overweight obesity in adolescents under different genders are similar but not identical. CONCLUSION: This study examined the interactions of a number of conditions from the individual, behavioral, learning and living environment that led to the same overweight obese outcome among adolescents of different genders. Our research will be useful to policymakers in that interventions should take into account the combined effects of a number of different aspects rather than focusing on a single factor that causes overweight and obesity.
Assuntos
Obesidade Infantil , Humanos , Adolescente , Masculino , Feminino , Obesidade Infantil/epidemiologia , Obesidade Infantil/psicologia , China/epidemiologia , Fatores de Risco , Inquéritos e Questionários , Lógica Fuzzy , Sobrepeso/epidemiologia , Sobrepeso/psicologia , Fatores Sexuais , Exercício FísicoRESUMO
Lithium-ion batteries (LIBs) have the advantage of high energy density, which has attracted the wide attention of researchers. Nevertheless, the growth of lithium dendrites on the anode surface causes short life and poor safety, which limits their application. Therefore, it is necessary to deeply understand the growth mechanism of lithium dendrites. Here, the growth mechanism of lithium dendrites is briefly summarized, and the real-time monitoring technologies of lithium dendrite growth in recent years are reviewed. The real-time monitoring technologies summarized here include in situ X-ray, in situ Raman, in situ resonance, in situ microscopy, in situ neutrons, and sensors, and their representative studies are summarized. This paper is expected to provide some guidance for the research of lithium dendrites, so as to promote the development of LIBs.
RESUMO
Using Ni(II) as the catalyst, electron-deficient 3,5-dimethylacryloylpyrazole olefin was reacted with C,N-diarylnitrones alone for 10 min to prepare novel five-member heterocyclic products, 4-3,5-dimethylacryloylpyrazole isoxazolidines with 100% regioselectivity and up to 99% yield. And then, taking these cycloadducts as substrates, six kinds of derivatization reactions, like ring-opening, nucleophilic substitution, addition-elimination and reduction, were studied. Experimental results showed that all kinds of transformations could obtain the target products at a high conversion rate under mild conditions, a finding which provided the basic methods for organic synthesis methodology research based on an isoxazolidine skeleton.
RESUMO
BACKGROUND: As a global pandemic, The Corona Virus Disease 2019 (COVID-19) has brought significant challenges to the primary health care (PHC) system. Health professionals are constantly affected by the pandemic's harmful impact on their mental health and are at significant risk of job burnout. Therefore, it is essential to gain a comprehensive understanding of how their burnout was affected. The study aimed to examine the relationship between COVID-19 event strength and job burnout among PHC providers and to explore the single mediating effect of job stress and work engagement and the chain mediating effect of these two variables on this relationship. METHODS: Multilevel stratified convenience sampling method was used to recruit 1148 primary medical staff from 48 PHC institutions in Jilin Province, China. All participants completed questionnaires regarding sociodemographic characteristics, COVID-19 event strength, job stress, work engagement, and job burnout. The chain mediation model was analyzed using SPSS PROCESS 3.5 Macro Model 6. RESULTS: COVID-19 event strength not only positively predicted job burnout, but also indirectly influenced job burnout through the mediation of job stress and work engagement, thereby influencing job burnout through the "job stress â work engagement" chain. CONCLUSIONS: This study extends the application of event systems theory and enriches the literature about how the COVID-19 pandemic impacted PHC medical staff job burnout. The findings derived from our study have critical implications for current and future emergency response and public policy in the long-term COVID-19 disease management period.
Assuntos
Esgotamento Profissional , COVID-19 , Estresse Ocupacional , Humanos , Pandemias , Satisfação no Emprego , Esgotamento Profissional/psicologia , Estresse Ocupacional/psicologia , Corpo Clínico , Inquéritos e QuestionáriosRESUMO
Incorporation of ceramic materials into separators has been frequently applied in both research and industry to improve the overall high-temperature performances of lithium ion batteries. However, inorganic ceramic particles tend to form aggregation in separators and even fall off in the separator matrix due to the inferior combination between ceramic particles and polymer matrix, giving rise to a decrease in separator porosity and thus the degradation of battery performances. Herein, a single-layer core-shell architecture is designed to reinforce the polymer matrix through encircling Al2 O3 particles by poly(vinylidene fluoride) with strong inter-molecular interaction. The 3D-reinforced microstructure effectively improves pore distribution and thermal stability to resist the dimensional deformation at high temperatures, thus giving rise to a high Coulombic efficiency of 99.16% and 87.5% capacity retention after 500 cycles at 80 °C for LiFePO4 /Li batteries. In particular, the excellent performances of the proposed separator microstructure are confirmed with a thickness value of commercial separators. This work provides a promising strategy to fabricate a core-shell structural composite separator for stable lithium ion batteries at high temperatures.
RESUMO
Introduction: Amid sudden public health crises, preserving the well-being and optimal working states of frontline healthcare professionals is imperative for efficaciously managing the emergences. However, there is a paucity of research investigating the health status of frontline healthcare professionals through the perspective of work-family conflict. This study sought to elucidate the complex interrelations between work-family conflict, work engagement, job burnout, and self-rated health among public health emergency responders within the context of the COVID-19 pandemic. Methods: A convenience sampling method was employed to survey 1,309 public health emergency responders at the Jilin Provincial Center for Disease Control and Prevention. An online survey was administered utilizing a self-constructed questionnaire. The hypothesized relationships between the variables were tested using structural equation modeling. Results: The direct impact of work-family conflict on self-rated health is not significant. The association between work-family conflicts and self-rated health was significantly mediated by work engagement and job burnout, respectively. Meanwhile, work engagement and job burnout had a chain mediating effect on work-family conflict and self-rated health. Conclusion: Work-family conflict plays a critical role in shaping the health and work status of public health emergency responders during public health crises. Organizations and managers should, in their workplace management practices, focus not only on work-related factors but also give due consideration to family-related factors. Supportive policies, including family-friendly initiatives, should be developed to safeguard the health and work engagement of public health emergency responders.
Assuntos
Esgotamento Profissional , COVID-19 , Socorristas , Engajamento no Trabalho , Humanos , COVID-19/psicologia , COVID-19/epidemiologia , Esgotamento Profissional/psicologia , Masculino , Feminino , Adulto , China/epidemiologia , Inquéritos e Questionários , Socorristas/psicologia , Socorristas/estatística & dados numéricos , Pessoa de Meia-Idade , Saúde Pública , Nível de Saúde , Família/psicologia , SARS-CoV-2RESUMO
Lithium metal batteries (LMBs) have aroused extensive interest in the field of energy storage owing to the ultrahigh anode capacity. However, strong solvation of Li+ and slow interfacial ion transfer associated with conventional electrolytes limit their long-cycle and high-rate capabilities. Herein an electrolyte system based on fluoroalkyl ether 2,2,2-trifluoroethyl-1,1,2,3,3,3-hexafluoropropyl ether (THE) and ether electrolytes is designed to effectively upgrade the long-cycle and high-rate performances of LMBs. THE owns large adsorption energy with ether-based solvents, thus reducing Li+ interaction and solvation in ether electrolytes. With THE rich in fluoroalkyl groups adjacent to oxygen atoms, the electrolyte owns ultrahigh polarity, enabling solvation-free Li+ transfer with a substantially decreased energy barrier and ten times enhancement in Li+ transference at the electrolyte/anode interface. In addition, the uniform adsorption of fluorine-rich THE on the anode and subsequent LiF formation suppress dendrite formation and stabilize the solid electrolyte interphase layer. With the electrolyte, the lithium metal battery with a LiFePO4 cathode delivers unprecedented cyclic performances with only 0.0012% capacity loss per cycle over 5000 cycles at 10 C. Such enhancement is consistently observed for LMBs with other mainstream electrodes including LiCoO2 and LiNi0.5 Mn0.3 Co0.2 O2 , suggesting the generality of the electrolyte design for battery applications.
RESUMO
The lithium sulfur battery is regarded as a potential next-generation high-energy battery system. However, polysulfides dissolve and shuttle through the electrolytes, causing rapid capacity decay, serious self-discharge, and poor high-temperature performances. Here, we demonstrate that by directly introducing glutamate into commercial electrolytes, these issues can be tackled simultaneously. With abundant negatively charged hydroxyl groups, the glutamate additive electrolyte effectively suppresses the shuttling of negatively charged polysulfide ions through strong repulsive interaction up to 1.54 eV. With glutamate additive electrolyte, the lithium sulfur battery has a capacity retention of 60% after 1000 cycles at 5.95 mA/cm2, a self-discharge rate on the order of one-third that of commercial electrolytes, and stable operation at 60 °C.