Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nat Immunol ; 25(4): 622-632, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38454157

RESUMO

The development of a vaccine specific to severe acute respiratory syndrome coronavirus 2 Omicron has been hampered due to its low immunogenicity. Here, using reverse mutagenesis, we found that a phenylalanine-to-serine mutation at position 375 (F375S) in the spike protein of Omicron to revert it to the sequence found in Delta and other ancestral strains significantly enhanced the immunogenicity of Omicron vaccines. Sequence FAPFFAF at position 371-377 in Omicron spike had a potent inhibitory effect on macrophage uptake of receptor-binding domain (RBD) nanoparticles or spike-pseudovirus particles containing this sequence. Omicron RBD enhanced binding to Siglec-9 on macrophages to impair phagocytosis and antigen presentation and promote immune evasion, which could be abrogated by the F375S mutation. A bivalent F375S Omicron RBD and Delta-RBD nanoparticle vaccine elicited potent and broad nAbs in mice, rabbits and rhesus macaques. Our research suggested that manipulation of the Siglec-9 pathway could be a promising approach to enhance vaccine response.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Coelhos , Anticorpos Neutralizantes , Anticorpos Antivirais , Macaca mulatta , Macrófagos , Nanovacinas , Fagocitose , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico
2.
Circ Res ; 134(7): e17-e33, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420756

RESUMO

BACKGROUND: Microvascular complications are the major outcome of type 2 diabetes progression, and the underlying mechanism remains to be determined. METHODS: High-throughput RNA sequencing was performed using human monocyte samples from controls and diabetes. The transgenic mice expressing human CTSD (cathepsin D) in the monocytes was constructed using CD68 promoter. In vivo 2-photon imaging, behavioral tests, immunofluorescence, transmission electron microscopy, Western blot analysis, vascular leakage assay, and single-cell RNA sequencing were performed to clarify the phenotype and elucidate the molecular mechanism. RESULTS: Monocytes expressed high-level CTSD in patients with type 2 diabetes. The transgenic mice expressing human CTSD in the monocytes showed increased brain microvascular permeability resembling the diabetic microvascular phenotype, accompanied by cognitive deficit. Mechanistically, the monocytes release nonenzymatic pro-CTSD to upregulate caveolin expression in brain endothelium triggering caveolae-mediated transcytosis, without affecting the paracellular route of brain microvasculature. The circulating pro-CTSD activated the caveolae-mediated transcytosis in brain endothelial cells via its binding with low-density LRP1 (lipoprotein receptor-related protein 1). Importantly, genetic ablation of CTSD in the monocytes exhibited a protective effect against the diabetes-enhanced brain microvascular transcytosis and the diabetes-induced cognitive impairment. CONCLUSIONS: These findings uncover the novel role of circulatory pro-CTSD from monocytes in the pathogenesis of cerebral microvascular lesions in diabetes. The circulatory pro-CTSD is a potential target for the intervention of microvascular complications in diabetes.


Assuntos
Catepsina D , Diabetes Mellitus Tipo 2 , Monócitos , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Catepsina D/metabolismo , Catepsina D/farmacologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Precursores Enzimáticos , Camundongos Transgênicos , Monócitos/metabolismo , Transcitose/fisiologia
3.
Plant Physiol ; 195(2): 1536-1560, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38214043

RESUMO

Thiol-based redox regulation is a crucial posttranslational mechanism to acclimate plants to changing light availability. Here, we conducted a biotin switch-based redox proteomics study in Arabidopsis (Arabidopsis thaliana) to systematically investigate dynamics of thiol-redox networks in response to temporal changes in light availability and across genotypes lacking parts of the thioredoxin (Trx) or NADPH-Trx-reductase C (NTRC) systems in the chloroplast. Time-resolved dynamics revealed light led to marked decreases in the oxidation states of many chloroplast proteins with photosynthetic functions during the first 10 min, followed by their partial reoxidation after 2 to 6 h into the photoperiod. This involved f, m, and x-type Trx proteins showing similar light-induced reduction-oxidation dynamics, while NTRC, 2-Cys peroxiredoxins, and Trx y2 showed an opposing pattern, being more oxidized in light than dark. In Arabidopsis trxf1f2, trxm1m2, or ntrc mutants, most proteins showed increased oxidation states in the light compared to wild type, suggesting their light-dependent dynamics were related to NTRC/Trx networks. While NTRC deficiency had a strong influence in all light conditions, deficiencies in f- or m-type Trxs showed differential impacts on the thiol-redox proteome depending on the light environment, being higher in constant or fluctuating light, respectively. The results indicate plant redox proteomes are subject to dynamic changes in reductive and oxidative pathways to cooperatively fine-tune photosynthetic and metabolic processes in the light. The importance of the individual elements of the NTRC/Trx networks mediating these responses depend on the extent of light variability, with NTRC playing a crucial role to balance protein-redox states in rapidly fluctuating light.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Luz , Oxirredução , Proteoma , Compostos de Sulfidrila , Tiorredoxinas , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteoma/metabolismo , Compostos de Sulfidrila/metabolismo , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Dissulfetos/metabolismo , Fotossíntese/efeitos da radiação , Proteômica/métodos , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxina Dissulfeto Redutase/genética , Cloroplastos/metabolismo
4.
Eur Heart J ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953786

RESUMO

BACKGROUND AND AIMS: Physical activity has proven effective in preventing atherosclerotic cardiovascular disease, but its role in preventing degenerative valvular heart disease (VHD) remains uncertain. This study aimed to explore the dose-response association between moderate to vigorous physical activity (MVPA) volume and the risk of degenerative VHD among middle-aged adults. METHODS: A full week of accelerometer-derived MVPA data from 87 248 UK Biobank participants (median age 63.3, female: 56.9%) between 2013 and 2015 were used for primary analysis. Questionnaire-derived MVPA data from 361 681 UK Biobank participants (median age 57.7, female: 52.7%) between 2006 and 2010 were used for secondary analysis. The primary outcome was the diagnosis of incident degenerative VHD, including aortic valve stenosis (AS), aortic valve regurgitation (AR), and mitral valve regurgitation (MR). The secondary outcome was VHD-related intervention or mortality. RESULTS: In the accelerometer-derived MVPA cohort, 555 incident AS, 201 incident AR, and 655 incident MR occurred during a median follow-up of 8.11 years. Increased MVPA volume showed a steady decline in AS risk and subsequent AS-related intervention or mortality risk, levelling off beyond approximately 300 min/week. In contrast, its association with AR or MR incidence was less apparent. The adjusted rates of AS incidence (95% confidence interval) across MVPA quartiles (Q1-Q4) were 11.60 (10.20, 13.20), 7.82 (6.63, 9.23), 5.74 (4.67, 7.08), and 5.91 (4.73, 7.39) per 10 000 person-years. The corresponding adjusted rates of AS-related intervention or mortality were 4.37 (3.52, 5.43), 2.81 (2.13, 3.71), 1.93 (1.36, 2.75), and 2.14 (1.50, 3.06) per 10 000 person-years, respectively. Aortic valve stenosis risk reduction was also observed with questionnaire-based MVPA data [adjusted absolute difference Q4 vs. Q1: AS incidence, -1.41 (-.67, -2.14) per 10 000 person-years; AS-related intervention or mortality, -.38 (-.04, -.88) per 10 000 person-years]. The beneficial association remained consistent in high-risk populations for AS, including patients with hypertension, obesity, dyslipidaemia, and chronic kidney disease. CONCLUSIONS: Higher MVPA volume was associated with a lower risk of developing AS and subsequent AS-related intervention or mortality. Future research needs to validate these findings in diverse populations with longer durations and repeated periods of activity monitoring.

5.
BMC Genomics ; 25(1): 222, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418975

RESUMO

Shepherd's crook (Geodorum) is a genus of protected orchids that are valuable both medicinally and ornamentally. Geodorum eulophioides (GE) is an endangered and narrowly distributed species, and Geodorum densiflorum (GD) and Geodorum attenuatum (GA) are widespread species. The growth of orchids depend on microorganisms. However, there are few studies on the microbial structure in Geodorum, and little is known about the roles of microorganisms in the endangered mechanism of G. eulophioides. This study analyzed the structure and composition of bacterial and fungal communities in the roots and rhizosphere soil of GE, GD, and GA. The results showed that Delftia, Bordetella and norank_f_Xanthobacteraceae were the dominant bacteria in the roots of Geodorum, while norank_f_Xanthobacteraceae, Gaiella and norank_f_norank_o_Gaiellales were the dominant bacteria in the rhizosphere soil of Geodorum. In the roots, the proportion of Mycobacterium in GD_roadside was higher than that in GD_understory, on the contrary, the proportion of Fusarium, Delftia and Bordetella in GD_roadside was lower than that in GD_understory. Compared with the GD_understory, the roots of GD_roadside had lower microbial diversity. In the endangered species GE, Russula was the primary fungus in the roots and rhizosphere soil, with fungal diversity lower than in the more widespread species. Among the widespread species, the dominant fungal genera in the roots and rhizosphere soil were Neocosmospora, Fusarium and Coprinopsis. This study enhances our understanding of microbial composition and diversity, providing fundamental information for future research on microbial contributions to plant growth and ecosystem function in Geodorum.


Assuntos
Agaricales , Fusarium , Rizosfera , Solo/química , Ecossistema , Fungos/genética , Microbiologia do Solo , Raízes de Plantas/microbiologia , Bactérias/genética
6.
Breast Cancer Res ; 26(1): 44, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468288

RESUMO

BACKGROUND: Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is a deubiquitinating enzyme that regulates ERα expression in triple-negative cancer (TNBC). This study aimed to explore the deubiquitination substrates of UCHL1 related to endocrine therapeutic responses and the mechanisms of UCHL1 dysregulation in TNBC. METHODS: Bioinformatics analysis was conducted using online open databases. TNBC representative MDA-MB-468 and SUM149 cells were used for in vitro and in-vivo studies. Co-immunoprecipitation was used to explore the interaction between UCHL1 and KLF5 and UCHL1-mediated KIF5 deubiquitination. CCK-8, colony formation and animal studies were performed to assess endocrine therapy responses. The regulatory effect of TET1/3 on UCHL1 promoter methylation and transcription was performed by Bisulfite sequencing PCR and ChIP-qPCR. RESULTS: UCHL1 interacts with KLF5 and stabilizes KLF5 by reducing its polyubiquitination and proteasomal degradation. The UCHL1-KLF5 axis collaboratively upregulates EGFR expression while downregulating ESR1 expression at both mRNA and protein levels in TNBC. UCHL1 knockdown slows the proliferation of TNBC cells and sensitizes the tumor cells to Tamoxifen and Fulvestrant. KLF5 overexpression partially reverses these trends. Both TET1 and TET3 can bind to the UCHL1 promoter region, reducing methylation of associated CpG sites and enhancing UCHL1 transcription in TNBC cell lines. Additionally, TET1 and TET3 elevates KLF5 protein level in a UCHL1-dependent manner. CONCLUSION: UCHL1 plays a pivotal role in TNBC by deubiquitinating and stabilizing KLF5, contributing to endocrine therapy resistance. TET1 and TET3 promote UCHL1 transcription through promoter demethylation and maintain KLF5 protein level in a UCHL1-dependent manner, implying their potential as therapeutic targets in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Regiões Promotoras Genéticas , Proliferação de Células , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/genética , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo
7.
J Neurochem ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38533619

RESUMO

Though previous studies revealed the potential associations of elevated levels of plasma fibrinogen with dementia, there is still limited understanding regarding the influence of Alzheimer's disease (AD) biomarkers on these associations. We sought to investigate the interrelationships among fibrinogen, cerebrospinal fluid (CSF) AD biomarkers, and cognition in non-demented adults. We included 1996 non-demented adults from the Chinese Alzheimer's Biomarker and LifestylE (CABLE) study and 337 from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The associations of fibrinogen with AD biomarkers and cognition were explored using multiple linear regression models. The mediation analyses with 10 000 bootstrapped iterations were conducted to explore the mediating effects of AD biomarkers on cognition. In addition, interaction analyses and subgroup analyses were conducted to assess the influence of covariates on the relationships between fibrinogen and AD biomarkers. Participants exhibiting low Aß42 were designated as A+, while those demonstrating high phosphorylated tau (P-tau) and total tau (Tau) were labeled as T+ and N+, respectively. Individuals with normal measures of Aß42 and P-tau were categorized as the A-T- group, and those with abnormal levels of both Aß42 and P-tau were grouped under A+T+. Fibrinogen was higher in the A+ subgroup compared to that in the A- subgroup (p = 0.026). Fibrinogen was higher in the A+T+ subgroup compared to that in the A-T- subgroup (p = 0.011). Higher fibrinogen was associated with worse cognition and Aß pathology (all p < 0.05). Additionally, the associations between fibrinogen and cognition were partially mediated by Aß pathology (mediation proportion range 8%-28%). Interaction analyses and subgroup analyses showed that age and ApoE ε4 affect the relationships between fibrinogen and Aß pathology. Fibrinogen was associated with both cognition and Aß pathology. Aß pathology may be a critical mediator for impacts of fibrinogen on cognition.

8.
Cancer Sci ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979884

RESUMO

The relationship among polycystic ovary syndrome (PCOS), endometrial cancer (EC), and glycometabolism remains unclear. We explored shared genes between PCOS and EC, using bioinformatics to unveil their pathogenic connection and influence on EC prognosis. Gene Expression Omnibus datasets GSE226146 (PCOS) and GSE196033 (EC) were used. A protein-protein interaction (PPI) network was constructed to identify the central genes. Candidate markers were screened using dataset GSE54250. Differences in marker expression were confirmed in mouse PCOS and human EC tissues using RT-PCR and immunohistochemistry. The effect of PGD on EC proliferation and migration was explored using Ki-67 and Transwell assays. PGD's impact on the glycometabolic pathway within carbon metabolism was assessed by quantifying glucose content and lactic acid production. R software identified 31 common genes in GSE226146 and GSE196033. Gene Ontology functional classification revealed enrichment in the "purine nucleoside triphosphate metabolism process," with key Kyoto Encyclopedia of Genes and Genomes pathways related to "carbon metabolism." The PPI network identified 15 hub genes. HK2, NDUFS8, PHGDH, PGD, and SMAD3 were confirmed as candidate markers. The RT-PCR analysis validated distinct HK2 and PGD expression patterns in mouse PCOS ovarian tissue and human EC tissue, as well as in normal and EC cells. Transfection experiments with Ishikawa cells further confirmed PGD's influence on cell proliferation and migration. Suppression of PGD expression impeded glycometabolism within the carbon metabolism of EC cells, suggesting PGD as a significant PCOS risk factor impacting EC proliferation and migration through modulation of single carbon metabolism. These findings highlight PGD's pivotal role in EC onset and prognosis.

9.
Angiogenesis ; 27(3): 475-499, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38739303

RESUMO

Aging is a natural process associated with chronic inflammation in the development of vascular dysfunction. We hypothesized that chemokine C-C motif ligands 4 (CCL4) might play a vital role in aging-related vascular dysfunction. Circulating CCL4 was up-regulated in elderly subjects and in aged animals. CCL4 inhibition reduced generation of reactive oxygen species (ROS), attenuated inflammation, and restored cell functions in endothelial progenitor cells from elderly subjects and in aged human aortic endothelial cells. CCL4 promoted cell aging, with impaired cell functioning, by activating ROS production and inflammation. CCL4 knockout mice and therapeutic administration of anti-CCL4 neutralizing antibodies exhibited vascular and dermal anti-aging effects, with improved wound healing, via the down-regulation of inflammatory proteins and the activation of angiogenic proteins. Altogether, our findings suggested that CCL4 may contribute to aging-related vascular dysfunction via activating oxidative stress and endothelial inflammation. CCL4 may be a potential therapeutic target for vascular protections during aging.


Assuntos
Envelhecimento , Quimiocina CCL4 , Inflamação , Camundongos Knockout , Estresse Oxidativo , Espécies Reativas de Oxigênio , Humanos , Animais , Envelhecimento/metabolismo , Envelhecimento/patologia , Inflamação/patologia , Inflamação/metabolismo , Quimiocina CCL4/metabolismo , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Masculino , Idoso , Camundongos Endogâmicos C57BL , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Neovascularização Fisiológica , Pessoa de Meia-Idade
10.
BMC Plant Biol ; 24(1): 5, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163899

RESUMO

Yellow Camellia (Camellia sect. chrysantha) is a rare ornamental plant and an important germplasm resource globally. Camellia nitidissima thrives in normal acidic soils, while Camellia limonia can adapt to the calcareous soils found in karst areas. Our previous study on the karst adaptation of yellow camellias revealed that the expression levels of heat shock protein 20(HSP20) were higher in Camellia limonia than in Camellia nitidissima. However, the functions of the HSP20 gene of Camellia limonia remain unclear to data. In this study, the HSP20 genes of Camellia limonia (ClHSP20-OE lines) and Camellia. nitidissima (CnHSP20-OE lines) were cloned and overexpressed heterologously in Arabidopsis thaliana. Additionally, we overexpressed the HSP20 gene of Arabidopsis (AtHSP20-OE lines) was also overexpressed, and the T-DNA inserted mutants (athspmutant lines) were also used to determine the functions of HSP20 genes. Under high calcium stress, the chlorophyll, nitrogen, water content and humidity of leaves were increased in ClHSP20-OE lines, while those of other lines were declined. The size of the stomatal apertures, stomatal conductance, and the photosynthetic efficiency of ClHSP20-OE lines were higher than those of the other lines. However, the accumulation of H2O2 and O2- in the leaves of ClHSP20-OE lines was the lowest among all the lines. Energy spectrum scanning revealed that the percentage of calcium on the surfaces of the leaves of ClHSP20-OE lines was relatively low, while that of athspmutant lines was the highest. The ClHSP20 gene can also affected soil humidity and the contents of soil nitrogen, phosphorus, and potassium. Transcriptome analysis revealed that the expressions of FBA5 and AT5G10770 in ClHSP20-OE lines was significantly up-regulated compared to that of CnHSP20-OE lines. Compared to that of athspmutant lines, the expressions of DREB1A and AT3G30460 was significantly upregulated in AtHSP20-OE lines, and the expression of POL was down-regulated. Our findings suggest that the HSP20 gene plays a crucial role in maintained photosynthetic rate and normal metabolism by regulating the expression of key genes under high-calcium stress. This study elucidates the mechanisms underlying the karst adaptation in Camellia. limonia and provides novel insights for future research on karst plants.


Assuntos
Arabidopsis , Camellia , Camellia/genética , Arabidopsis/genética , Cálcio , Proteínas de Choque Térmico/genética , Peróxido de Hidrogênio , Nitrogênio , Solo , Regulação da Expressão Gênica de Plantas
11.
BMC Med ; 22(1): 255, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902726

RESUMO

BACKGROUND: Long COVID potentially increases healthcare utilisation and costs. However, its impact on the NHS remains to be determined. METHODS: This study aims to assess the healthcare utilisation of individuals with long COVID. With the approval of NHS England, we conducted a matched cohort study using primary and secondary care data via OpenSAFELY, a platform for analysing anonymous electronic health records. The long COVID exposure group, defined by diagnostic codes, was matched with five comparators without long COVID between Nov 2020 and Jan 2023. We compared their total healthcare utilisation from GP consultations, prescriptions, hospital admissions, A&E visits, and outpatient appointments. Healthcare utilisation and costs were evaluated using a two-part model adjusting for covariates. Using a difference-in-difference model, we also compared healthcare utilisation after long COVID with pre-pandemic records. RESULTS: We identified 52,988 individuals with a long COVID diagnosis, matched to 264,867 comparators without a diagnosis. In the 12 months post-diagnosis, there was strong evidence that those with long COVID were more likely to use healthcare resources (OR: 8.29, 95% CI: 7.74-8.87), and have 49% more healthcare utilisation (RR: 1.49, 95% CI: 1.48-1.51). Our model estimated that the long COVID group had 30 healthcare visits per year (predicted mean: 29.23, 95% CI: 28.58-29.92), compared to 16 in the comparator group (predicted mean visits: 16.04, 95% CI: 15.73-16.36). Individuals with long COVID were more likely to have non-zero healthcare expenditures (OR = 7.66, 95% CI = 7.20-8.15), with costs being 44% higher than the comparator group (cost ratio = 1.44, 95% CI: 1.39-1.50). The long COVID group costs approximately £2500 per person per year (predicted mean cost: £2562.50, 95% CI: £2335.60-£2819.22), and the comparator group costs £1500 (predicted mean cost: £1527.43, 95% CI: £1404.33-1664.45). Historically, individuals with long COVID utilised healthcare resources more frequently, but their average healthcare utilisation increased more after being diagnosed with long COVID, compared to the comparator group. CONCLUSIONS: Long COVID increases healthcare utilisation and costs. Public health policies should allocate more resources towards preventing, treating, and supporting individuals with long COVID.


Assuntos
COVID-19 , Aceitação pelo Paciente de Cuidados de Saúde , Humanos , Masculino , Feminino , Aceitação pelo Paciente de Cuidados de Saúde/estatística & dados numéricos , Pessoa de Meia-Idade , COVID-19/epidemiologia , COVID-19/terapia , Estudos de Coortes , Idoso , Adulto , Inglaterra/epidemiologia , Síndrome de COVID-19 Pós-Aguda , SARS-CoV-2 , Idoso de 80 Anos ou mais , Custos de Cuidados de Saúde/estatística & dados numéricos , Adulto Jovem , Medicina Estatal/economia , Medicina Estatal/estatística & dados numéricos
12.
J Med Virol ; 96(5): e29640, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38699969

RESUMO

After the termination of zero-COVID-19 policy, the populace in China has experienced both Omicron BA.5 and XBB waves. Considering the poor antibody responses and severe outcomes observed among the elderly following infection, we conducted a longitudinal investigation to examine the epidemiological characteristics and antibody kinetics among 107 boosted elderly participants following the Omicron BA.5 and XBB waves. We observed that 96 participants (89.7%) were infected with Omicron BA.5, while 59 (55.1%) participants were infected with Omicron XBB. Notably, 52 participants (48.6%) experienced dual infections of both Omicron BA.5 and XBB. The proportion of symptomatic cases appeared to decrease following the XBB wave (18.6%) compared to that after the BA.5 wave (59.3%). Omicron BA.5 breakthrough infection induced lower neutralizing antibody titers against XBB.1.5, BA.2.86, and JN.1, while reinfection with Omicron XBB broadened the antibody responses against all measured Omicron subvariants and may alleviate the wild type-vaccination induced immune imprinting. Boosted vaccination type and comorbidities were the significant factors associated with antibody responses. Updated vaccines based on emerging severe acute respiratory syndrome coronavirus 2 variants are needed to control the Coronavirus Disease 2019 pandemic in the elderly.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Imunização Secundária , SARS-CoV-2 , Humanos , Idoso , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Masculino , Feminino , Estudos Longitudinais , China/epidemiologia , SARS-CoV-2/classificação , SARS-CoV-2/fisiologia , Anticorpos Neutralizantes , Cinética , Anticorpos Antivirais/sangue , Reinfecção/epidemiologia
13.
Plant Cell Environ ; 47(7): 2542-2560, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38518065

RESUMO

Thioredoxins (TRXs) are central to redox regulation, modulating enzyme activities to adapt metabolism to environmental changes. Previous research emphasized mitochondrial and microsomal TRX o1 and h2 influence on mitochondrial metabolism, including photorespiration and the tricarboxylic acid (TCA) cycle. Our study aimed to compare TRX-based regulation circuits towards environmental cues mainly affecting photorespiration. Metabolite snapshots, phenotypes and CO2 assimilation were compared among single and multiple TRX mutants in the wild-type and the glycine decarboxylase T-protein knockdown (gldt1) background. Our analyses provided evidence for additive negative effects of combined TRX o1 and h2 deficiency on growth and photosynthesis. Especially metabolite accumulation patterns suggest a shared regulation mechanism mainly on mitochondrial dihydrolipoamide dehydrogenase (mtLPD1)-dependent pathways. Quantification of pyridine nucleotides, in conjunction with 13C-labelling approaches, and biochemical analysis of recombinant mtLPD1 supported this. It also revealed mtLPD1 inhibition by NADH, pointing at an additional measure to fine-tune it's activity. Collectively, we propose that lack of TRX o1 and h2 perturbs the mitochondrial redox state, which impacts on other pathways through shifts in the NADH/NAD+ ratio via mtLPD1. This regulation module might represent a node for simultaneous adjustments of photorespiration, the TCA cycle and branched chain amino acid degradation under fluctuating environmental conditions.


Assuntos
Di-Hidrolipoamida Desidrogenase , Mitocôndrias , Tiorredoxinas , Di-Hidrolipoamida Desidrogenase/metabolismo , Di-Hidrolipoamida Desidrogenase/genética , Mitocôndrias/metabolismo , Tiorredoxinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimologia , Fotossíntese , Oxirredução , NAD/metabolismo , Meio Ambiente , Mutação , Dióxido de Carbono/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
14.
Oncology ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39159604

RESUMO

Neuroendocrine differentiation is often found in colorectal cancer but its impact on prognosis remains controversial. This study explored the association between neuroendocrine differentiation and prognosis in stage II/III colorectal cancer patients. METHODS: Between 2012 and 2018, a total of 3,441 stage II/III colorectal cancer patients were included for analysis. To verify neuroendocrine differentiation, immunohistochemistry was performed to explore the expression of chromogranin A and synaptophysin in colorectal cancer. In addition, the difference in overall survival between groups was analyzed. A Kaplan-Meier analysis was used to determine the clinicopathological characteristics significantly correlated with survival, and a Cox proportional hazards analysis was used to identify factors independently affecting overall survival prognosis. Furthermore, the findings were validated by the Gene Expression Omnibus database. RESULTS: Among the 3441 stage II/III colorectal cancer patients, in comparison to patients with neuroendocrine differentiation (+), patients with neuroendocrine differentiation (+) had a poorer prognosis (P = 0.001). Furthermore, multivariate survival analysis of stage II cases revealed that tumor differentiation (P = 0.018), nerve invasion (P < 0.001) and neuroendocrine differentiation (+) (P = 0.002) were independent prognostic factors. Moreover, the prognosis of patients with neuroendocrine differentiation (+) was similar to that of patients with high-risk factors in stage II cases (P = 0.639). High chromogranin A expression was correlated with poor prognosis in stage II colorectal cancer patients in the Gene Expression Omnibus database (P < 0.001). CONCLUSION: The prognosis of colorectal cancer with neuroendocrine differentiation (+) was poor, especially in stage II colorectal cancer patients. neuroendocrine differentiation might be another high-risk factor for the prognosis of stage II colorectal cancer patients.

15.
J Biomed Sci ; 31(1): 62, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862973

RESUMO

BACKGROUND: Ovarian carcinoma (OC) is a fatal malignancy, with most patients experiencing recurrence and resistance to chemotherapy. In contrast to hematogenous metastasizing tumors, ovarian cancer cells disseminate within the peritoneal cavity, especially the omentum. Previously, we reported omental crown-like structure (CLS) number is associated with poor prognosis of advanced-stage OC. CLS that have pathologic features of a dead or dying adipocyte was surrounded by several macrophages is well known a histologic hallmark for inflammatory adipose tissue. In this study, we attempted to clarify the interaction between metastatic ovarian cancer cells and omental CLS, and to formulate a therapeutic strategy for advanced-stage ovarian cancer. METHODS: A three-cell (including OC cells, adipocytes and macrophages) coculture model was established to mimic the omental tumor microenvironment (TME) of ovarian cancer. Caspase-1 activity, ATP and free fatty acids (FFA) levels were detected by commercial kits. An adipocyte organoid model was established to assess macrophages migration and infiltration. In vitro and in vivo experiments were performed for functional assays and therapeutic effect evaluations. Clinical OC tissue samples were collected for immunochemistry stain and statistics analysis. RESULTS: In three-cell coculture model, OC cells-derived IL-6 and IL-8 could induce the occurrence of pyroptosis in omental adipocytes. The pyroptotic adipocytes release ATP to increase macrophage infiltration, release FFA into TME, uptake by OC cells to increase chemoresistance. From OC tumor samples study, we demonstrated patients with high gasdermin D (GSDMD) expression in omental adipocytes is highly correlated with chemoresistance and poor outcome in advanced-stage OC. In animal model, by pyroptosis inhibitor, DSF, effectively retarded tumor growth and prolonged mice survival. CONCLUSIONS: Omental adipocyte pyroptosis may contribute the chemoresistance in advanced stage OC. Omental adipocytes could release FFA and ATP through the GSDMD-mediate pyroptosis to induce chemoresistance and macrophages infiltration resulting the poor prognosis in advanced-stage OC. Inhibition of adipocyte pyroptosis may be a potential therapeutic modality in advanced-stage OC with omentum metastasis.


Assuntos
Adipócitos , Resistencia a Medicamentos Antineoplásicos , Omento , Neoplasias Ovarianas , Piroptose , Microambiente Tumoral , Feminino , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Omento/metabolismo , Humanos , Adipócitos/metabolismo , Camundongos , Animais , Linhagem Celular Tumoral , Técnicas de Cocultura
16.
Mol Cell Biochem ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110278

RESUMO

The CCND1 mRNA possesses at least two distinct lengths of the 3'-untranslated region (3'UTR), with the long isoform containing multiple AU-rich elements (AREs). The tandem zinc finger (TZF) domains of human ZFP36 family members have the capacity to bind to AREs and promote mRNA degradation. Our previous study demonstrated that mutations in the TZF domain of ZFP36L1 or ZFP36L2 increased the CCND1 expression. In this study, we investigated whether ZFP36L1 and ZFP36L2 could downregulate the expression of the long 3'UTR isoform of CCND1 mRNA in human colorectal cancer (CRC) cells. Firstly, the Gene Expression Profiling Interactive Analysis 2 database indicated downregulation of ZFP36 and ZFP36L1, while E2F1 and CCND1 were upregulated in human CRC tissues compared to normal colorectal tissues. Overexpression of ZFP36L1 and/or ZFP36L2 in T-REx-293, DLD-1, and HCT116 cells led to a decrease in the total CCND1, long isoform ratio of CCND1 mRNA, and E2F1 expression. Conversely, knockdown of ZFP36L1 and ZFP36L2 in HCT116 cells resulted in an increase in total CCND1, long isoform ratio of CCND1 mRNA, and E2F1 expression. Knockdown of E2F1 decreased CCND1 expression, indicating a potential role for E2F1 in regulating CCND1 expression at the transcriptional level. These findings suggest that ZFP36L1 and ZFP36L2 play a negative role in CCND1 expression. The underlying mechanisms might involve the reduction of E2F1 transactivation at the transcriptional level and the promotion of AREs-mediated decay of the long 3'UTR isoform of CCND1 through posttranscriptional processes.

17.
J Org Chem ; 89(14): 10004-10011, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38935867

RESUMO

N-Alkoxyphthalimides, one kind of phthalimide derivative, have great importance in synthesis, mainly used as free radical precursors. While the phthalimide unit, for a long time, was treated as part of the waste stream. Construction of C-N bonds has always been a hot spot, especially in reductive cross-coupling. Herein, a nickel-catalyzed reductive cross-coupling reaction of N-methoxyphthalimides with alkyl halides is described, where N-methoxyphthalimides serve as nitrogen electrophiles. This tactic provides a new approach to construct C-N bonds under mild neutral conditions. Alkyl chlorides, bromides, iodides, and sulfonates are all fit to this transformation. Moreover, the reaction could tolerate a broad substrate scope, especially base-sensitive functional groups (boron or silicon groups), as well as competitive nucleophilic groups (phenols and amides), which are incompatible with traditional Gabriel synthesis under basic conditions, demonstrating a complementary role of this work to Gabriel synthesis.

18.
Org Biomol Chem ; 22(25): 5101-5104, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38859801

RESUMO

4-Aryl-3,4-dihydrocoumarins are one of the most important structural motifs. Herein, we disclose an enantioselective N-heterocyclic carbene catalyzed ß-arylation/cyclization of α-bromoenals with 3-aminophenols under mild conditions. The protocol allows for the rapid preparation of 4-aryl-3,4-dihydrocoumarins in acceptable yields with good enantioselectivities. The products of this reaction could be converted into chiral diarylpropanoic acid derivatives without erosion of the enantioselectivity.

19.
Nanotechnology ; 35(17)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38262054

RESUMO

Heparins are a family of sulfated linear negatively charged polysaccharides that have been widely used for their anticoagulant, antithrombotic, antitumor, anti-inflammatory, and antiviral properties. Additionally, it has been used for acute cerebral infarction relief as well as other pharmacological actions. However, heparin's self-aggregated macrocomplex may reduce blood circulation time and induce life-threatening thrombocytopenia (HIT) complicating the use of heparins. Nonetheless, the conjugation of heparin to immuno-stealth biomolecules may overcome these obstacles. An immunostealth recombinant viral capsid protein (VP28) was expressed and conjugated with heparin to form a novel nanoparticle (VP28-heparin). VP28-heparin was characterized and tested to determine its immunogenicity, anticoagulation properties, effects on total platelet count, and risk of inducing HIT in animal models. The synthesized VP28-heparin trimeric nanoparticle was non-immunogenic, possessed an average hydrodynamic size (8.81 ± 0.58 nm) optimal for the evasion renal filtration and reticuloendothelial system uptake (hence prolonging circulating half-life). Additionally, VP28-heparin did not induce mouse death or reduce blood platelet count when administered at a high dosein vivo(hence reducing HIT risks). The VP28-heparin nanoparticle also exhibited superior anticoagulation properties (2.2× higher prothrombin time) and comparable activated partial thromboplastin time, but longer anticoagulation period when compared to unfractionated heparin. The anticoagulative effects of the VP28-heparin can also be reversed using protamine sulfate. Thus, VP28-heparin may be an effective and safe heparin derivative for therapeutic use.


Assuntos
Heparina , Trombocitopenia , Animais , Camundongos , Heparina/farmacologia , Heparina/uso terapêutico , Anticoagulantes/farmacologia , Coagulação Sanguínea , Trombocitopenia/tratamento farmacológico , Contagem de Plaquetas
20.
J Fluoresc ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639858

RESUMO

Two fluorescent probes, Y1-2 were synthesized from 2-acetonaphthone, 4-acetylbiphenyl, and phenyl hydrazine by Vilsmeier-Haack reaction and Knoevenagel condensation. Their recognition efficacies for N2H4 were tested by UV-visible absorption spectroscopy and fluorescence emission spectroscopy. The recognition mechanism were studies by density-functional theory calculations, and the effect of pH on N2H4 recognition was also studied. The results showed that the probe Y1-2 has high selectivity and a low detection limit for N2H4, and the recognition of N2H4 can be accomplished at physiological pH. The probes have had obvious aggregation-induced luminescence effect, large Stokes shift, high sensitivity, and can be successfully applied to live cell imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA