Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Biochem Biophys Res Commun ; 685: 149160, 2023 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-37922788

RESUMO

One of the causes of sudden cardiac death is arrhythmia after acute myocardial ischemia. After ischemia, endogenous orphanin (N/OFQ) plays a role in the development of arrhythmias. It is discussed in this paper how nonpeptide orphanin receptor (ORL1) antagonists such as J-113397, SB-612111 and compound-24 (C-24) affect arrhythmia in rats following acute myocardial ischemia and what the optimal concentrations for these antagonists are. The electrocardiogram of the rat was recorded as part of the experiment. The concentrations of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) in the myocardium were measured following euthanasia. Following the use of three antagonists, we found the lowest inflammatory factor concentrations and the smallest number of ischemic arrhythmia episodes. All of them had a small impact on cardiac function. LF/HF values were significantly reduced in all three antagonist groups, suggesting that they are involved in the regulation of sympathetic nerves. In conclusion, pretreatment with the three antagonist groups can effectively reduce the concentration of TNF-α and IL-1ß, and the occurrence of arrhythmias after ischemia can also be significantly reduced. Inflammation and sympathetic activity may be related to the mechanism of action of antagonists.


Assuntos
Doença da Artéria Coronariana , Isquemia Miocárdica , Ratos , Animais , Fator de Necrose Tumoral alfa , Isquemia Miocárdica/complicações , Isquemia Miocárdica/patologia , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/patologia , Miocárdio/patologia , Isquemia/patologia
2.
Opt Express ; 31(22): 36770-36780, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017820

RESUMO

Metamaterials-based multispectral camouflage has attracted growing interest in most fields of military and aerospace due to its unprecedented emission adjustability covering an ultra-broadband spectral range. Conventional camouflage mainly concentrates on an individual spectral range, e. g. either of visible, mid-wavelength-infrared (MWIR) or long-wavelength-infrared (LWIR), which is especially incapable of self-adaptive thermal camouflage to the changing ambient environment. Here, we theoretically demonstrate a multispectral camouflage metamaterial consisting of a four-layer titanium/silicon/vanadium dioxide/ titanium (Ti/Si/VO2/Ti) nanostructure, where the background temperature-adaptive thermal camouflage is implemented by exploiting the switchable metal/dielectric state of the phase-changing material VO2 for regulating the infrared emissivity of the designed metamaterial, whilst visible color camouflage is also achieved by tuning thickness of middle Si layer to match the background's appearance. It has been shown that the designed metamaterial with the dielectric state of VO2 enables thermal camouflage of high background temperature by increasing the thermal emission (average emissivity of 0.69/0.83 for MWIR/LWIR range), meanwhile, the metamaterial of the metallic state of VO2 for low background temperature thermal camouflage stemming from low emission (average emissivity of 0.29 for both MWIR/LWIR range) due to high infrared reflection. Furthermore, the designed metamaterial structural color is robust for a phase change switching. This proposed adaptive camouflage provides a potential strategy to broaden dynamical camouflage technology for further practical application in the fields of military and civilian.

3.
Opt Lett ; 48(19): 5065-5068, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37773386

RESUMO

In this Letter, we theoretically propose an all-dielectric quasi-three-dimensional subwavelength structure constructed by a dielectric metasurface cascaded with a multilayer photonic crystal (PC) to achieve a high-performance asymmetric optical transmission (AOT). The desired optical control of the AOT is realized by combining the predetermined anomalous beam steering of a phase gradient metasurface with a unique bandgap as well as transmission characteristics of the multilayered stacked PC. The simulated results demonstrate that the proposed AOT device operating at the center wavelength of 633 nm with a circularly polarized state exhibits a high transmission of up to 62.4% with a contrast ratio exceeding 606. The excellent performance of AOT is achieved by making disassembled transverse magnetic and transverse electric polarized light under the same deflection angle concurrently match with respective high-efficient transmission bands in the multilayer PC. Furthermore, dependence of the performance of the proposed device on structural dimensions is also explored. Fortunately, the designed AOT structure is applicable to any linearly polarized light but is accompanied by double diffraction channels as compared to the circularly polarized light case. Owing to its planar configuration, passive operation, and compelling performance under various polarization states, the proposed strategy for achieving AOT paves a new road for realizing high-performance optical metadevices in compact optical systems.

4.
Sensors (Basel) ; 23(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37112517

RESUMO

Fiber-optic surface plasmon resonance (FOSPR) sensing technology has become an appealing candidate in biochemical sensing applications due to its distinguished capability of remote and point-of-care detection. However, FOSPR sensing devices with a flat plasmonic film on the optical fiber tip are seldom proposed with most reports concentrating on fiber sidewalls. In this paper, we propose and experimentally demonstrate the plasmonic coupled structure of a gold (Au) nanodisk array and a thin film integrated into the fiber facet, enabling the excitation of the plasmon mode on the planar gold film by strong coupling. This plasmonic fiber sensor is fabricated by the ultraviolet (UV) curing adhesive transferring technology from a planar substrate to a fiber facet. The experimental results demonstrate that the fabricated sensing probe has a bulk refractive index sensitivity of 137.28 nm/RIU and exhibits moderate surface sensitivity by measuring the spatial localization of its excited plasmon mode on Au film by layer-by-layer self-assembly technology. Furthermore, the fabricated plasmonic sensing probe enables the detection of bovine serum albumin (BSA) biomolecule with a detection limit of 19.35 µM. The demonstrated fiber probe here provides a potential strategy to integrate plasmonic nanostructure on the fiber facet with excellent sensing performance, which has a unique application prospect in the detection of remote, in situ, and in vivo invasion.

5.
Opt Express ; 30(2): 2006-2017, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209350

RESUMO

Plasmonic nanostructures have attracted remarkable attention in label-free biosensing detection due to their unprecedented potential of high-sensitivity, miniaturization, multi-parameter, and high throughput screening. In this paper, we propose a plasmonic metamaterial absorber consisting of an asymmetrical step-shaped slit-groove array layer and an opaque gold film, separated by a silica dielectric layer, which demonstrates three-resonant perfect absorption peaks at near-infrared frequencies in an air environment.This is equivalent to three reflection dips due to the opaque gold membrane underneath the structure. Originating from the coupling and hybridization of different plasmonic modes, these three absorption peaks show different linewidths and distinctive excellent sensing performance. The surface lattice resonance (SLR) at the short wavelength range enables an ultra-narrow absorption peak of merely 2 nm and a high bulk refractive index sensitivity of 1605 nm/RIU, but occurring with comparatively low surface sensitivity. Compared to the above-mentioned narrowband SLR mode, the other two absorption peaks, respectively stemming from the coupling between slit-cavity mode and the plasmon resonance of different orders, possess relatively broad linewidths and low bulk refractive index sensitivities, yet outstanding surface sensitivities. The complementary sensing performance among these absorption peaks presents opportunities for using the designed plasmonic metamaterial absorber for multi-parameter detection and various complex application scenarios.

6.
Opt Express ; 30(17): 31136-31146, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242202

RESUMO

Color filter with a combination of excellent angle insensitivity and high near-infrared shielding absorption is essential to broaden its practical application of harsh environment. However, there are few attention on the near-infrared absorption of color filter, prominent to the protection of human eyes in some special application scenarios. Herein, we propose and develop a dual-function color filter composed of four-layer silicon/titanium planar nanostructure that integrates with both angle-invariance and near-infrared shielding. The proposed color filter enables the creation of three reflective color primaries of cyan, yellow, and magenta (CYM) employing a combination of Fabry-Perot resonance and anti-resonant effect with the tuning of silicon thickness. The created reflective colors are less sensitive over a wide angle of incidence up to 60°, where the center wavelength of optical spectra is shifted by below 1.8%. Besides the angle-invariant performance, the color filter can effectively shield near-infrared light with a 70% average absorption under normal incidence. Moreover, this filter's thermal stability at 500°C demonstrates its feasibility for extreme environments. The demonstrated color filter is suitable for architectural decorative coatings and outdoor protective coatings in some harsh environment with strong near-infrared radiation, such as glass smelting, steel forging, and long-term sunlight exposure.

7.
Opt Express ; 30(19): 33627-33638, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36242393

RESUMO

The electrically dynamic regulation of plasmonic nanostructures provides a promising technology for integrated and miniaturized electro-optical devices. In this work, we systematically investigate the electrical regulation of optical properties of plasmonic Au nanodisk (AuND) arrays integrated with different conductive polymers, polypyrrole (PPy), polyaniline (PANI), and poly(3,4-ethylenedioxythiophene) (PEDOT), which show their respective superiority of electrical modulation by applying the appropriate low voltages. For the hybrid structure of polymer-coated AuND arrays, its reflection spectrum and corresponding structural color are dynamically modulated by altering the complex dielectric function of the covering nanometer-thick conductive polymers based on the electrically controlled redox reaction. Due to the distinct refractive index responses of different polymers on the external voltage, polymer-coated AuND arrays exhibit different spectral variations, response time, and cycle stability. As a result, the reflection intensity of PPy-coated AuND arrays is mainly tailored by increasing optical absorption of the PPy polymer over a broad spectral range, which is distinguished from the wavelength shift of the resonance modes of AuND arrays induced by the other two polymers. Additionally, AuND arrays integrated with both PANI and PEDOT polymers exhibit a rapid switching time of less than 50 ms, which is 5 times smaller than the case of the PPy polymer. Most importantly, PPy-coated AuND arrays exhibit excellent cycle stability over 50 cycles compared to the other two polymers integrated devices. This work demonstrates a valuable technique strategy to realize high-performance polymer-coated dynamically tunable nanoscale electro-optical devices, which has especially significance for smart windows or dynamic display applications.

8.
Appl Opt ; 61(26): 7706-7712, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36256371

RESUMO

Plasmonic absorbers have received considerable attention because of their promising applications in solar cells, controllable thermal emission, and infrared detection. Most proposed plasmonic absorbers are fabricated with a precisely designed surface-pattern, which require complex manufacturing process and are costly. Herein, we propose a simple plasmonic absorber composed of a triple-layer Ti/SiO2/TiN nanosystem. The maximal absorption reaches 99.8% from 1554 nm to 1565 nm, and an average absorption of 95.3% is achieved in the long-wave near-infrared range (from 1100 nm to 2500 nm). The synergistic effect of the upper surface plasmon resonance and the Fabry-Perot resonance in the Ti/SiO2/TiN cause the high absorption. Additionally, the effects of the incident angle, polarization state, structural materials, and geometric parameters on the absorption performance are investigated in detail. The proposed near-infrared absorber has potential application prospects in solar collectors, thermal emitters, and solar cells, owing to its high absorption, ultra-broadband bandwidth, insensitivity to incident angle and polarization state, low cost, and simple preparation process.

9.
Opt Express ; 28(1): 695-704, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-32118992

RESUMO

In this paper, we introduce a novel method for the fabrication of self-assembly plasmonic metamaterials by exploiting fluid instabilities of optical thin films. Due to interplay between template reflow and spinodal dewetting, two metal nanoparticles of different sizes are generated on the top mesas of free-standing porous anodic aluminum oxide (AAO) template, which results in the apprearance of double resonant peaks in the extinction spectrum. These two resonant peaks possess refractive index resolution 3.27 × 10-4 and 2.53 × 10-4 RIU, respectively. This optical intensity modulation based plasmonic nanoplatform shows a dramatically surface sensing performance with outstanding detection capacity of biomolecules, because of the very small decay length of electric field at dual-modes. The detection ability for concanavalin A (Con A) demonstrats that the limit of detection of dual-modes reaches as small as 68 and 79 nM, respectively.


Assuntos
Técnicas Biossensoriais , Fenômenos Ópticos , Óxido de Alumínio/química , Concanavalina A , Eletrodos , Ligação Proteica , Refratometria , Ribonucleases/metabolismo
10.
Opt Express ; 28(24): 36455-36465, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379738

RESUMO

Plasmonic nanostructures have proven an extensive practical prospect in ultra-sensitive label-free biomolecule sensing due to their nanoscale localization and large near-field enhancement. Here, we demonstrate a photonic plasmonic hybridization in the self-aligned disk/hole nanocavity array under two specific cases of nanogap and nanooverlap achieved by adjusting pillar height embedded into hole. The proposed disk/hole arrays in above two cases exhibit three hybridized modes with extremely high absorption, mainly arising from the in-phase (bonding) and out-of-phase (antibonding) coupling of dipolar modes of their parent disk and hole. Surprisingly, when the nanogap feature of the disk/hole array is transformed to the nanooverlap, crossing the quantum effect region, the bonding mode in the disk/hole array has an enormous transition in the resonant frequency. In comparison with the counterpart in the nanogap structure, the bonding mode in the nanooverlap structure supports strongest near-field localization (i.e., the decay length down to merely 3.8 nm), although charge transfer channel provided by the geometry connect between disk and hole quenches partial field enhancement. Furthermore, we systematically investigate the sensing performances of multiple hybridized modes in above two cases by considering two crucial evaluating parameters, bulk refractive index sensitivity and surface sensitivity. It is demonstrated that, in the nanogap structure, the bonding mode possesses both high bulk refractive index sensitivity and surface sensitivity. Dissimilarly, for the nanooverlap structure, the bonding and antibonding modes show different surface sensitivities in different regions away from the surface, which can be used to monitoring different bio-molecular sizes and achieve the most optimum sensitivity. Due to its unique sensing features, this disk/hole array mechanism is very valuable and promising for developing of high sensitivity sensing platform.

11.
Nano Lett ; 19(2): 1158-1165, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30595022

RESUMO

Bending light along arbitrary curvatures is a captivating and popular notion, triggering unprecedented endeavors in achieving diffraction-free propagation along a curved path in free-space. Much effort has been devoted to achieving this goal in homogeneous space, which solely relies on the transverse acceleration of beam centroid exerted by a beam generator. Here, based on an all-dielectric metasurface, we experimentally report a synthetic strategy of encoding and multiplexing acceleration features on a freely propagating light beam, synergized with photonic spin states of light. Independent switching between two arbitrary visible accelerating light beams with distinct acceleration directions and caustic trajectories is achieved. This proof-of-concept recipe demonstrates the strength of the designed metasurface chip: subwavelength pixel size, independent control over light beam curvature, broadband operation in the visible, and ultrathin scalable planar architecture. Our results open up the possibility of creating ultracompact, high-pixel density, and flat-profile nanophotonic platforms for efficient generation and dynamical control of structured light beams.

12.
Anal Chem ; 90(11): 6683-6692, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29738232

RESUMO

2D nanoplasmonic substrates excited in transmission spectroscopy are ideal for several biosensing, metamaterial, and optical applications. We show that their excellent properties can be further improved with plasmonic coupling of Au nanoparticles (AuNPs) on gold-coated nanodisk arrays excited at large incidence angles of up to 50°. The Bragg modes (BM) thereby strongly couple to AuNP immobilized on the plasmonic substrate due to shorter decay length of the plasmon at higher incidence angles, leading to a further enhanced field between the AuNP and the plasmonic substrate. The field was highest and two hotspots were created at orthogonal positions for AuNP located close to the corner of the Au film and Au nanodisk, which was also observed for AuNP dimers. Hybridization between single-stranded DNA (ssDNA) immobilized on the surface of the AuNPs and the capture ssDNA on the gold-coated nanodisk arrays led to at least a 5-fold signal improvement and a 7-fold lower limit of detection at 7 pM for ssDNA-functionalized AuNPs at large incident angles. Thus, we demonstrate that higher field strength can be accessed and the significant advantages of working with high incidence angles with AuNP on a 2D plasmonic crystal in plasmonic sensing.

13.
Opt Express ; 26(3): 3271-3276, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29401857

RESUMO

In this paper, we fabricate a freestanding plasmonic cascade grating and investigate the extraordinary optical behaviors associated with it. The structure consists of two identical metallic gratings with nearly perfect alignment on the lateral direction supported by a Si3N4 membrane. Two types of optical transmission resonances emerge in the fabricated sample at visible frequencies, corresponding to the electric and magnetic resonances in the cascaded structure. These resonances respectively originate from the near-field coupling of plasmonic symmetric and antisymmetric modes in the metal-dielectric-metal waveguide. Moreover, the influence of the incident angle and structure parameters on two resonant peaks are investigated. We envision that this type of plasmonic free-standing cascaded nanostructure holds promise for a series of spectrum-dependent applications for the visible light.

14.
Opt Express ; 25(8): 9285-9294, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28438004

RESUMO

Conventional method to generate autofocusing Airy (AFA) beam involves the optical Fourier transform (FT) system, which has a fairly long working distance due to the focal length of FT lens, presence of spatial light modulator (SLM) and auxiliary total reflection mirrors. Here, we propose an extremely compact design to generate high-efficiency AFA beam at visible frequency by using metasurface which is composed of a single layer array of amorphous titanium dioxide (TiO2) elliptical nanofins sitting on the fused-silica substrate. Numerical simulations show that the designed structures are capable of precisely controlling the deflection of Airy beam and tuning the focal length of AFA beam. We further numerically demonstrate that the phase modulation of AFA beam could combine with the concept of vortex light field to produce vortical AFA beam. We anticipate that such device can be useful in the ultra-compact integrated optic system, biomedical nanosurgery and optical trapping applications.

15.
Opt Express ; 25(22): 26950-26957, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29092176

RESUMO

We present a dual-resonance fiber surface plasmon resonance (SPR) sensor for biological analysis. The sensing element was fabricated by sequentially sputtering layers of indium tin oxide (ITO) (100 nm thickness) and Au (35 nm thickness) on the surface of an optical fiber. The refractive index dispersion effect of ITO material led to resonances in the near infrared and visible wavelength regions. The refractive index of ITO is larger than the optical fiber in visible spectral area (400 to 733nm), such that the structure is a typical Kretschmann configuration surface plasmon resonance sensor. However, an Otto configuration is observed in the near infrared area (NIR) due to the ITO refractive index being smaller than the fiber core. We characterized the sensor performance by measuring bulk refractive index (RI) sensitivity in the two configurations, which were 1345 nm/RIU in the Kretschmann configuration and 1100 nm/RIU in the Otto configuration. In addition, this sensor was applied for real-time and label-free monitoring of the IgG/anti-IgG biomolecular interaction. As a robust and ultra-compact SPR sensor, which possesses wide detection range and is highly sensitive, this fiber SPR sensor can be applied for real-time biological analysis and monitoring.


Assuntos
Técnicas Biossensoriais , Ressonância de Plasmônio de Superfície , Anticorpos Anti-Idiotípicos/análise , Imunoglobulina G/análise , Fibras Ópticas , Refratometria , Compostos de Estanho
16.
Opt Express ; 25(8): 8563-8570, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28437934

RESUMO

We present a novel multilayer-coated surface plasmon resonance sensor for dual refractive index range measurements based on a capillary structure. The sensing elements include an internally coated Ag layer and an externally coated bilayer of Au with an overlayer of thin indium tin oxide (ITO). The internal Ag layer was sensitive to higher refractive index (RI) medium while the external Au/ITO layer was sensitive to lower refractive index medium. We evaluated the sensor performance by measuring RI changes in two channels, RI sensitivities were -1951 nm/RIU and 2496 nm/RIU, respectively. This compact, low-cost large RI detection range SPR sensor offers the possibility for wider RI detection range and highly sensitive SPR studies in industry and chemical sensing.

17.
Opt Lett ; 42(16): 3239-3242, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28809918

RESUMO

A freestanding, multilayered fishnet metamaterial is reported to experimentally exhibit a negative refractive index in the green-light spectral range. The realization of a negative refractive index at such a high frequency range mainly originates from low-loss magnetic resonance and interactions between the neighboring functional layers. Based on a good agreement between the numerically simulated and experimentally measured transmittance and reflectance spectra, a single negative refractive index of -0.76 with a figure-of-merit of 0.5 is achieved for the metamaterial at the wavelength of 532 nm.

18.
Opt Lett ; 42(13): 2463-2466, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957260

RESUMO

With experimental results, we demonstrate the generation of high-order Laguerre-Gaussian modes with non-zero radial indices using a metal meta-surface, which is composed of a series of rectangle nanoholes with different orientation angles. The phase shift after transmission through the metasurface is determined by the orientation angle of the nanohole. This device works over a broad wavelength band ranging from 700 to 1000 nm. Moreover, we achieve a LG mode with a radial mode index of 10. Our results provide an integrated method to obtain high-order LG modes, which can be used to enhance the capacity in optical communication and manipulation.

19.
Opt Express ; 24(10): 10904-11, 2016 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-27409911

RESUMO

A novel surface plasmon resonance (SPR) thermometer based on liquid crystal (LC) filled hollow fiber is demonstrated in this paper. A hollow fiber was internally coated with silver and then filled with LC. The SPR response to temperature was studied using modeling and verified experimentally. The results demonstrated that the refractive index of LC decreases with the increasing temperature and the variation can be detected by the resonance wavelength shift of the plasmon resonance. The temperature sensitivities were 4.72 nm/°C in the temperature range of 20 to 34.5 °C and 0.55 nm/°C in the temperature range of 36 to 50 °C, At the phase transition temperature between nematic and isotropic phases of the LC, the temperature sensitivity increased by one order of magnitude and a shift of more than 46 nm was observed with only a 1.5 °C temperature change. This sensor can be used for temperature monitoring and alarming, and can be extended for other physical parameter measurement.

20.
Opt Express ; 23(11): 14434-45, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26072805

RESUMO

In this paper, the optical properties of asymmetric double layer metallic gratings are presented theoretically. The asymmetric structure is achieved by two main factors: one corresponding to moving alternatively metal nanowires of the top layer metallic grating, the other corresponding to possessing different thickness of the top and down layer metallic gratings. Our proposed structure shows one remarkable narrow-band transmission dip at normal incidence, which is distinct different from that of symmetric structure. The results are further confirmed by using different numerical computation methods, and explained by the analytical model of Fano-like resonance. We find that, only when the thickness of the down layer metallic grating has certain fixed value, transmission dip can be transformed from two to only one dip even if the existence of symmetry breaking. However, the wavelength position of the dip can be easily controlled by adjusting the thickness of the top layer metallic grating without the need to modify the structure period, and the width of metal nanowire. Moreover, the influence of other structure parameters on the dip is also investigated. Surprisingly, in order to keep the appearance of one dip in the transmission spectrum of designed structure, there is a good linear approximation between the refractive index of waveguide layer and the thickness of down layer metallic grating, and the relation of waveguide layer thickness and the thickness of down layer metallic grating satisfy secondary polynomial fitting. This work can be used to develop subwavelength metallic-grating-based and narrow-band tunable wavelength filters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA