Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 609(7929): 1038-1047, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36171374

RESUMO

Oxidative genome damage is an unavoidable consequence of cellular metabolism. It arises at gene regulatory elements by epigenetic demethylation during transcriptional activation1,2. Here we show that promoters are protected from oxidative damage via a process mediated by the nuclear mitotic apparatus protein NuMA (also known as NUMA1). NuMA exhibits genomic occupancy approximately 100 bp around transcription start sites. It binds the initiating form of RNA polymerase II, pause-release factors and single-strand break repair (SSBR) components such as TDP1. The binding is increased on chromatin following oxidative damage, and TDP1 enrichment at damaged chromatin is facilitated by NuMA. Depletion of NuMA increases oxidative damage at promoters. NuMA promotes transcription by limiting the polyADP-ribosylation of RNA polymerase II, increasing its availability and release from pausing at promoters. Metabolic labelling of nascent RNA identifies genes that depend on NuMA for transcription including immediate-early response genes. Complementation of NuMA-deficient cells with a mutant that mediates binding to SSBR, or a mitotic separation-of-function mutant, restores SSBR defects. These findings underscore the importance of oxidative DNA damage repair at gene regulatory elements and describe a process that fulfils this function.


Assuntos
Proteínas de Ciclo Celular , Dano ao DNA , Reparo do DNA , Estresse Oxidativo , Regiões Promotoras Genéticas , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Genes , Teste de Complementação Genética , Mitose , Mutação , Estresse Oxidativo/genética , Diester Fosfórico Hidrolases/metabolismo , Poli ADP Ribosilação , Regiões Promotoras Genéticas/genética , RNA/biossíntese , RNA/genética , RNA Polimerase II/metabolismo , Fuso Acromático/metabolismo , Sítio de Iniciação de Transcrição
2.
J Biol Chem ; 299(5): 104686, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031820

RESUMO

Dry age-related macular degeneration (AMD) and recessive Stargardt's disease (STGD1) lead to irreversible blindness in humans. The accumulation of all-trans-retinal (atRAL) induced by chaos in visual cycle is closely associated with retinal atrophy in dry AMD and STGD1 but its critical downstream signaling molecules remain ambiguous. Here, we reported that activation of eukaryotic translation initiation factor 2α (eIF2α) by atRAL promoted retinal degeneration and photoreceptor loss through activating c-Jun N-terminal kinase (JNK) signaling-dependent apoptosis and gasdermin E (GSDME)-mediated pyroptosis. We determined that eIF2α activation by atRAL in photoreceptor cells resulted from endoplasmic reticulum homeostasis disruption caused at least in part by reactive oxygen species production, and it activated JNK signaling independent of and dependent on activating transcription factor 4 and the activating transcription factor 4/transcription factor C/EBP homologous protein (CHOP) axis. CHOP overexpression induced apoptosis of atRAL-loaded photoreceptor cells through activating JNK signaling rather than inhibiting the expression of antiapoptotic gene Bcl2. JNK activation by eIF2α facilitated photoreceptor cell apoptosis caused by atRAL via caspase-3 activation and DNA damage. Additionally, we demonstrated that eIF2α was activated in neural retina of light-exposed Abca4-/-Rdh8-/- mice, a model that shows severe defects in atRAL clearance and displays primary features of human dry AMD and STGD1. Of note, inhibition of eIF2α activation by salubrinal effectively ameliorated retinal degeneration and photoreceptor apoptosis in Abca4-/-Rdh8-/- mice upon light exposure. The results of this study suggest that eIF2α is an important target to develop drug therapies for the treatment of dry AMD and STGD1.


Assuntos
Fator de Iniciação 2 em Eucariotos , Degeneração Retiniana , Retinaldeído , Doença de Stargardt , Animais , Humanos , Camundongos , Fator 4 Ativador da Transcrição/metabolismo , Apoptose , Transportadores de Cassetes de Ligação de ATP/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Retinaldeído/metabolismo , Doença de Stargardt/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo
3.
Echocardiography ; 41(3): e15779, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38477165

RESUMO

BACKGROUND: Radiofrequency catheter ablation (RFCA) is an effective method for controlling the heart rate of paroxysmal atrial fibrillation (PAF). However, recurrence is trouble under the RFCA. To gain a deeper understanding of the risk factors for recurrence in patients, we created a nomogram model to provide clinicians with treatment recommendations. METHODS: A total of two hundred thirty-three patients with PAF treated with RFCA at Guizhou Medical University Hospital between January 2021 and December 2022 were consecutively included in this study, and after 1 year of follow-up coverage, 166 patients met the nadir inclusion criteria. Patients with AF were divided into an AF recurrence group and a non-recurrence group. The nomogram was constructed using univariate and multivariate logistic regression analyses. By calculating the area under the curve, we analyzed the predictive ability of the risk scores (AUC). In addition, the performance of the nomogram in terms of calibration, discrimination, and clinical utility was evaluated. RESULTS: At the 12-month follow-up, 48 patients (28.92%) experienced a recurrence of AF after RFCA, while 118 patients (71.08%) maintained a sinus rhythm. In addition to age, sex, and TRV, LAD, and TTPG were independent predictors of recurrence of RFCA. The c-index of the nomogram predicted AF recurrence with an accuracy of .723, showing good decision curves and a calibrated nomogram, as determined by internal validation using a bootstrap sample size of 1000. CONCLUSION: We created a nomogram based on multifactorial logistic regression analysis to estimate the probability of recurrence in patients with atrial fibrillation 1 year after catheter ablation. This plot can be utilized by clinicians to predict the likelihood of recurrence.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Ablação por Radiofrequência , Humanos , Resultado do Tratamento , Nomogramas , Valor Preditivo dos Testes , Fatores de Risco , Ablação por Cateter/métodos , Catéteres , Recidiva
4.
J Biol Chem ; 298(2): 101553, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34973334

RESUMO

The breakdown of all-trans-retinal (atRAL) clearance is closely associated with photoreceptor cell death in dry age-related macular degeneration (AMD) and autosomal recessive Stargardt's disease (STGD1), but its mechanisms remain elusive. Here, we demonstrate that activation of gasdermin E (GSDME) but not gasdermin D promotes atRAL-induced photoreceptor damage by activating pyroptosis and aggravating apoptosis through a mitochondria-mediated caspase-3-dependent signaling pathway. Activation of c-Jun N-terminal kinase was identified as one of the major causes of mitochondrial membrane rupture in atRAL-loaded photoreceptor cells, resulting in the release of cytochrome c from mitochondria to the cytosol, where it stimulated caspase-3 activation required for cleavage of GSDME. Aggregation of the N-terminal fragment of GSDME in the mitochondria revealed that GSDME was likely to penetrate mitochondrial membranes in photoreceptor cells after atRAL exposure. ABC (subfamily A, member 4) and all-trans-retinol dehydrogenase 8 are two key proteins responsible for clearing atRAL in the retina. Abca4-/-Rdh8-/- mice exhibit serious defects in atRAL clearance upon light exposure and serve as an acute model for dry AMD and STGD1. We found that N-terminal fragment of GSDME was distinctly localized in the photoreceptor outer nuclear layer of light-exposed Abca4-/-Rdh8-/- mice. Of note, degeneration and caspase-3 activation in photoreceptors were significantly alleviated in Abca4-/-Rdh8-/-Gsdme-/- mice after exposure to light. The results of this study indicate that GSDME is a common causative factor of photoreceptor pyroptosis and apoptosis arising from atRAL overload, suggesting that repressing GSDME may represent a potential treatment of photoreceptor atrophy in dry AMD and STGD1.


Assuntos
Células Fotorreceptoras , Proteínas Citotóxicas Formadoras de Poros , Retina , Retinaldeído , Doença de Stargardt , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Caspase 3/metabolismo , Camundongos , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Retina/metabolismo , Retina/patologia , Retinaldeído/metabolismo , Doença de Stargardt/metabolismo , Doença de Stargardt/patologia
5.
Bioconjug Chem ; 34(2): 366-376, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36626242

RESUMO

In addition to residual cancer cells, the surgery resection-induced hyperinflammatory microenvironment is a key factor that leads to postsurgical cancer recurrence. Herein, we developed a dual-functional nanodrug Asp@cLANVs for postsurgical recurrence inhibition by loading the classical anti-inflammatory drug aspirin (Asp) into cross-linked lipoic acid nanovesicles (cLANVs). The Asp@cLANVs can not only kill residual cancer cells at the doses comparable to common cytotoxic drugs by synergistic interaction between Asp and cLANVs, but also improve the postsurgical inflammatory microenvironment by their strongly synergistic anti-inflammation activity between Asp and cLANVs. Using mice bearing partially removed NCI-H460 tumors, we found that Asp@cLANVs gave a much lower recurrence rate (33.3%) compared with the first-line cytotoxic drug cisplatin (100%), and no mice died for at least 60 days after Asp@cLANV treatment while no mouse survived beyond day 43 in the cisplatin group. This dual-functional nanodrug constructs the first example that combines residual cancer cell killing and postoperative inflammation microenvironment improvement to suppress postsurgical cancer recurrence.


Assuntos
Antineoplásicos , Nanopartículas , Ácido Tióctico , Humanos , Cisplatino/farmacologia , Ácido Tióctico/farmacologia , Ácido Tióctico/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/prevenção & controle , Neoplasia Residual/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Morte Celular , Aspirina/farmacologia , Aspirina/uso terapêutico , Nanopartículas/uso terapêutico , Linhagem Celular Tumoral , Microambiente Tumoral
6.
Cytokine ; 166: 156207, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37088001

RESUMO

This study aimed to investigate the association between nitric oxide synthase gene polymorphisms and the inflammatory responses in patients with 'fast-' and 'slow-' developing chronic obstructive pulmonary disease (COPD). In the main process, 190 patients with slow-developing COPD, 94 patients with fast-developing COPD and 105 healthy volunteers were selected for inclusion. Endothelial nitric oxide synthase (eNOS) was detected using western-blot eNOS sites, and inducible nitric oxide synthase (iNOS) was detected through SNPshot. T helper 17 cells (Th17) and regulator T (Treg) cells were detected via flow cytometry, and interferon-gamma, tumour necrosis factor-alpha, interleukin (IL)-17, IL-10, IL-6, IL-4 and IL-2 were detected using a cytometric bead array. The final results and conclusions drawn from the tests suggest that Th17/Treg-mediated immune inflammation plays an important role in the pathogenesis of COPD, but whether it affects the development of COPD needs further investigation. Overall, COPD patients with a young age of onset, young age of smoking initiation and small body mass index, as well as COPD patients with CC at rs3729508 in the iNOS gene and non-GG at rs7830 in the eNOS gene, may be more likely to contract fast-developing COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/patologia , Óxido Nítrico Sintase , Polimorfismo Genético , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo II/genética , Fumar , Óxido Nítrico
7.
Cell Mol Life Sci ; 79(3): 160, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35224690

RESUMO

Topoisomerase1 (TOP1)-mediated chromosomal breaks are endogenous sources of DNA damage that affect neuronal genome stability. Whether TOP1 DNA breaks are sources of genomic instability in Huntington's disease (HD) is unknown. Here, we report defective 53BP1 recruitment in multiple HD cell models, including striatal neurons derived from HD patients. Defective 53BP1 recruitment is due to reduced H2A ubiquitination caused by the limited RNF168 activity. The reduced availability of RNF168 is caused by an increased interaction with p62, a protein involved in selective autophagy. Depletion of p62 or disruption of the interaction between RNAF168 and p62 was sufficient to restore 53BP1 enrichment and subsequent DNA repair in HD models, providing new opportunities for therapeutic interventions. These findings are reminiscent to what was described for p62 accumulation caused by C9orf72 expansion in ALS/FTD and suggest a common mechanism by which protein aggregation perturb DNA repair signaling.


Assuntos
Quebras de DNA , Reparo do DNA , Doença de Huntington/metabolismo , Proteína Sequestossoma-1/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular , DNA/metabolismo , DNA Topoisomerases Tipo I/metabolismo , Células HEK293 , Histonas/metabolismo , Humanos , Doença de Huntington/genética , Neurônios/metabolismo , Transdução de Sinais , Ubiquitinação
8.
Biochem J ; 479(13): 1429-1439, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35726678

RESUMO

When the 'CO-releasing molecule-3', CORM-3 (Ru(CO)3Cl(glycinate)), is dissolved in water it forms a range of ruthenium complexes. These are taken up by cells and bind to intracellular ligands, notably thiols such as cysteine and glutathione, where the Ru(II) reaches high intracellular concentrations. Here, we show that the Ru(II) ion also binds to DNA, at exposed guanosine N7 positions. It therefore has a similar cellular target to the anticancer drug cisplatin, but not identical, because Ru(II) shows no evidence of forming intramolecular crossbridges in the DNA. The reaction is slow, and with excess Ru, intermolecular DNA crossbridges are formed. The addition of CORM-3 to human colorectal cancer cells leads to strand breaks in the DNA, as assessed by the alkaline comet assay. DNA damage is inhibited by growth media containing amino acids, which bind to extracellular Ru and prevent its entry into cells. We conclude that the cytotoxicity of Ru(II) is different from that of platinum, making it a promising development target for cancer therapeutics.


Assuntos
Antineoplásicos , Neoplasias , Rutênio , Antineoplásicos/química , DNA , Dano ao DNA , Humanos , Rutênio/química , Rutênio/metabolismo , Rutênio/farmacologia
9.
Gen Physiol Biophys ; 42(4): 349-360, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37449319

RESUMO

BST-1 (bone marrow stromal cell antigen-1) is thought to be a key molecule involved in regulating the functional activity of cells in various tissues and organs. BST-1 can catalyze the hydrolysis of nicotinamide adenine dinucleotide (NAD+) to produce cyclic ADP ribose (cADPR), which activates the activity of intracellular Ca2+ signaling. Currently, the role of BST-1 regulation of Ca2+ signaling pathway in pathological myocardial hypertrophy is unclear. We found elevated expression of BST-1 in cardiac hypertrophy tissues of spontaneously hypertensive rats in our vivo study, subsequently; the mechanism of BST-1 action on myocardial hypertrophy was explored in vitro experiment. We used aldosterone (ALD) to induce H9C2 cellular hypertrophy. cADPR levels and intracellular Ca2+ concentrations declined and calcium-regulated neurophosphatase (CaN) activity and protein expression were decreased after BST-1 knockdown. And then activated T-cell nuclear factor (NFATc3) entry nucleus was inhibited. All of the above resulted in that H9C2 cells size was reduced by rhodamine-phalloidin staining. Thus, BST-1 may exacerbate cardiac hypertrophy by activating the Ca2+/CaN/NFATc3 pathway.


Assuntos
Cálcio , ADP-Ribose Cíclica , Ratos , Animais , Cálcio/metabolismo , ADP-Ribosil Ciclase 1/metabolismo , ADP-Ribose Cíclica/metabolismo , Aldosterona , Fatores de Transcrição NFATC , Cardiomegalia/induzido quimicamente
10.
Exp Eye Res ; 214: 108877, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863682

RESUMO

Retinal pigment epithelium (RPE) cell apoptosis arising from all-trans-retinal (atRAL) is in close contact with the etiology of dry age-related macular degeneration (AMD) and autosomal recessive Stargardt's disease (STGD1), but its underlying mechanisms remain elusive. In this study, we reported that c-Jun N-terminal kinase (JNK) activation facilitated atRAL-induced apoptosis of RPE cells. Reactive oxygen species production and endoplasmic reticulum stress were identified as two of major upstream events responsible for activating JNK signaling in atRAL-loaded RPE cells. Inhibiting JNK signaling rescued RPE cells from apoptosis induced by atRAL through attenuating caspase-3 activation leading to poly-ADP-ribose polymerase (PARP) cleavage, and DNA damage response. Abca4-/-Rdh8-/- mice upon light exposure exhibit rapidly increased accumulation of atRAL in the retina, and display severe RPE degeneration, a primary attribute of dry AMD and STGD1. Reducing JNK signaling by intraperitoneally injected JNK-IN-8 was highly effective in preventing RPE atrophy and apoptosis in light-exposed Abca4-/-Rdh8-/- mice. These findings afford a further understanding for contribution of JNK activation by atRAL to retinal damage.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Degeneração Retiniana/prevenção & controle , Epitélio Pigmentado da Retina/patologia , Retinaldeído/metabolismo , Transdução de Sinais/fisiologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Apoptose , Western Blotting , Caspase 3/metabolismo , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Estresse do Retículo Endoplasmático/fisiologia , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
11.
Mol Pharm ; 19(9): 3187-3198, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35939328

RESUMO

As the most common subtype in ovarian malignancies, high-grade serous ovarian cancer (HGSOC) made less therapeutic progress in past decades due to the lack of effective drug-able targets. Herein, an effective linoleic acid (LA) and glucosamine (GlcN) hybrid (LA-GlcN) was synthesized for the treatment of HGSOC. The GlcN was introduced to recognize the glucose transporter 1 (GLUT 1) overexpressed in tumor cells to enhance the uptake of LA-GlcN, and the unsaturated LA was employed to trigger ferroptosis by iron-dependent lipid peroxidation. Since the iron content of HGSOC was ∼5 and 2 times, respectively, higher than that of the normal ovarian cells and low-grade serous ovarian cancer cells, these excess irons make them a good target to enhance the ferroptosis of LA-GlcN. The in vitro study demonstrated that LA-GlcN could selectively kill HGSOC cells without affecting normal cells; the in vivo study revealed that LA-GlcN at the dose of 50 mg kg-1 achieved a comparable tumor inhibition as doxorubicin hydrochloride (4 mg kg-1) while the overall survival of mice was extended largely due to the low toxicity, and when the dose was increased to 100 mg kg-1, the therapeutic outcomes could be improved further. This dietary hybrid which targets the excess endogenous iron to activate ferroptosis represents a promising drug for HGSOC treatment.


Assuntos
Cistadenocarcinoma Seroso , Ferroptose , Neoplasias Ovarianas , Animais , Feminino , Glucosamina , Humanos , Ferro , Ácido Linoleico/uso terapêutico , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia
12.
J Biol Chem ; 295(20): 6958-6971, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32265302

RESUMO

Disrupted clearance of all-trans-retinal (atRAL), a component of the visual (retinoid) cycle in the retina, may cause photoreceptor atrophy in autosomal recessive Stargardt disease (STGD1) and dry age-related macular degeneration (AMD). However, the mechanisms underlying atRAL-induced photoreceptor loss remain elusive. Here, we report that atRAL activates c-Jun N-terminal kinase (JNK) signaling at least partially through reactive oxygen species production, which promoted mitochondria-mediated caspase- and DNA damage-dependent apoptosis in photoreceptor cells. Damage to mitochondria in atRAL-exposed photoreceptor cells resulted from JNK activation, leading to decreased expression of Bcl2 apoptosis regulator (Bcl2), increased Bcl2 antagonist/killer (Bak) levels, and cytochrome c (Cyt c) release into the cytosol. Cytosolic Cyt c specifically provoked caspase-9 and caspase-3 activation and thereby initiated apoptosis. Phosphorylation of JNK in atRAL-loaded photoreceptor cells induced the appearance of γH2AX, a sensitive marker for DNA damage, and was also associated with apoptosis onset. Suppression of JNK signaling protected photoreceptor cells against atRAL-induced apoptosis. Moreover, photoreceptor cells lacking Jnk1 and Jnk2 genes were more resistant to atRAL-associated cytotoxicity. The Abca4-/-Rdh8-/- mouse model displays defects in atRAL clearance that are characteristic of STGD1 and dry AMD. We found that JNK signaling was activated in the neural retina of light-exposed Abca4-/-Rdh8-/- mice. Of note, intraperitoneal administration of JNK-IN-8, which inhibits JNK signaling, effectively ameliorated photoreceptor degeneration and apoptosis in light-exposed Abca4-/-Rdh8-/- mice. We propose that pharmacological inhibition of JNK signaling may represent a therapeutic strategy for preventing photoreceptor loss in retinopathies arising from atRAL overload.


Assuntos
Apoptose/efeitos dos fármacos , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Retinaldeído/farmacologia , Transdução de Sinais/efeitos dos fármacos , Doença de Stargardt/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Apoptose/genética , Camundongos , Camundongos Knockout , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína Quinase 9 Ativada por Mitógeno/genética , Células Fotorreceptoras de Vertebrados/patologia , Transdução de Sinais/genética , Doença de Stargardt/genética , Doença de Stargardt/patologia
13.
J Cell Physiol ; 236(5): 3660-3674, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33034385

RESUMO

The underlying mechanisms of complement activation in Stargardt disease type 1 (STGD1) and age-related macular degeneration (AMD) are not fully understood. Overaccumulation of all-trans-retinal (atRAL) has been proposed as the pathogenic factor in both diseases. By incubating retinal pigment epithelium (RPE) cells with atRAL, we showed that C5b-9 membrane attack complexes (MACs) were generated mainly through complement alternative pathway. An increase in complement factor B (CFB) expression as well as downregulation of complement regulatory proteins CD46, CD55, CD59, and CFH were observed in RPE cells after atRAL treatment. Furthermore, interleukin-1ß production was provoked in both atRAL-treated RPE cells and microglia/macrophages. Coincubation of RPE cells with interleukin-1 receptor antagonist (IL1Ra) and atRAL ameliorated complement activation and downregulated CFB expression by attenuating both p38 and c-Jun N-terminal kinase (JNK) signaling pathways. Our findings demonstrate that atRAL induces an autocrine/paracrine IL-1/IL-1R signaling to promote complement alternative pathway activation in RPE cells and provide a novel perspective on the pathomechanism of macular degeneration.


Assuntos
Ativação do Complemento/efeitos dos fármacos , Via Alternativa do Complemento/efeitos dos fármacos , Interleucina-1/metabolismo , Receptores de Interleucina-1/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Retinaldeído/farmacologia , Transdução de Sinais , Acetilcisteína/farmacologia , Animais , Células Cultivadas , Fator B do Complemento/metabolismo , Regulação para Baixo , Humanos , Interleucina-1/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Modelos Biológicos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Suínos , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Mol Med ; 27(1): 72, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238204

RESUMO

BACKGROUND: Although miR-125b plays a crucial role in many human cancers. However, its function in heart failure (HF) remains unclear. Our study aimed to investigate its involvement in heart failure. METHODS: In this study, the mouse HF model was successfully constructed through transverse aortic constriction (TAC) operation. Changes in mRNA and protein levels in isolated myocytes and heart tissues were examined using qRT-PCR, Western blot and Immunohistochemical staining and immunofluorescent staining. Changes in cardiac functions were examined using ultrasound. Interactions between miR-125b and BAK1 was analyzed using the luciferase reporter assay. Cardiomyocyte apoptosis was evaluated using the TUNEL staining. RESULTS: We found that miR-125b expression was significantly downregulated in myocardial tissues of HF mice. Moreover, miR-125b upregulation in HF mice injected with agomir-125b efficiently ameliorated cardiac function. Further, miR-125b upregulation significantly decreased the protein levels of apoptosis-related makers c-caspase 3 and Bax, while increased Bcl-2 expression. In addition, BAK1 was identified as a direct target of miR-125b. As expected, BAK1 overexpression observably reversed the effect of agomir-125b on cardiac function and on the expression of apoptosis-related makers in the heart tissues of HF mice. CONCLUSIONS: Taken together, miR-125b overexpression efficiently attenuated cardiac function injury of HF mice by targeting BAK1 through inhibiting cardiomyocyte apoptosis, suggesting that miR-125b/BAK1 axis might be a potential target for the diagnosis or treatment of HF.


Assuntos
Apoptose/genética , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Insuficiência Cardíaca/diagnóstico , Testes de Função Cardíaca , Masculino , Camundongos , Interferência de RNA , Ultrassonografia
15.
Langmuir ; 37(30): 9053-9058, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34269063

RESUMO

Inspired by a plant leaf, a slippery liquid-infused porous surface (SLIPS) exhibits attractive nonwetting and self-cleaning abilities. However, rigorous requirements for the infused liquid layer and its inevitable loss limit its practical use. Here, we propose a model structure defined as a non-SLIPS by introducing solid nanostructures covered with a discontinuous lubricant film. This non-SLIPS tuned by solid wettability achieves the excellent self-cleaning feature with a small sliding angle comparable to the counterpart of a typical SLIPS. This sliding angle α* can be further reduced to a saturated plateau by a slight enhancement of hydrophobicity of the solid nanostructures. Interestingly, the sliding velocity remains almost constant for all of these non-SLIPS samples at a given tilt angle, independent of solid wettability. We formulate the slippery mechanism by defining an energy barrier responsible for the sliding initiation on the non-SLIPS. This energy barrier of the non-SLIPS is correlated, with a qualitative agreement, to the molecular adsorption on the solid nanostructures. The antibiological contamination is confirmed for this non-SLIPS, indicating its excellent self-cleaning ability. The findings suggest that the new surfaces, even with the gradual depletion of the infused oil layer, exhibit the nondegradation of the self-cleaning performance.

16.
Int J Med Sci ; 18(2): 546-554, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390824

RESUMO

Long non-coding RNA musculin antisense RNA 1 (lncRNA MSC-AS1) has been recognized as an oncogene in pancreatic cancer, hepatocellular carcinoma, nasopharyngeal carcinoma, and renal cell carcinoma. However, the functional significance of MSC-AS1 and its underlying mechanism in gastric cancer (GC) progression remain unclear. In this study, we demonstrated that the expression of MSC-AS1 in GC tissues was significantly higher than that in non-tumor tissues. Moreover, the elevated level of MSC-AS1 was detected in GC cells (MKN-45, AGS, SGC-7901, and MGC-803) compared to normal GES-1 gastric mucosal cells. The cancer genome atlas (TCGA) data further indicated that the high level of MSC-AS1 was closely correlated with advanced tumor stage and poor prognosis of GC. Next, we revealed that MSC-AS1 knockdown inhibited the proliferation, glucose consumption, lactate production, and pyruvate production of MGC-803 cells. Conversely, MSC-AS1 overexpression enhanced the proliferation and glycolysis of AGC cells. Mechanistically, modulating MSC-AS1 level affected the expression of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), but did not impact the levels of hexokinase 2 (HK2) and pyruvate kinase M2 (PKM2) in GC cells. Based on this, we reversed the MSC-AS1 knockdown-induced the inhibition of cell proliferation and glycolysis by restoring PFKFB3 expression in MGC-803 cells. In conclusion, MSC-AS1 facilitated the proliferation and glycolysis of GC cells by maintaining PFKFB3 expression.


Assuntos
Recidiva Local de Neoplasia/epidemiologia , Fosfofrutoquinase-2/genética , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/genética , Efeito Warburg em Oncologia , Idoso , Linhagem Celular Tumoral , Proliferação de Células/genética , Intervalo Livre de Doença , Feminino , Gastrectomia , Mucosa Gástrica/patologia , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Prognóstico , RNA Longo não Codificante/genética , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Neoplasias Gástricas/cirurgia
17.
J Clin Nurs ; 30(3-4): 397-405, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33141987

RESUMO

AIMS AND OBJECTIVES: We aimed to investigate the anxiety of nurses who are supporting Wuhan in fighting against coronavirus disease 2019 (COVID-19) infection and explore relevant influencing factors. BACKGROUND: The COVID-19 outbreak poses a major threat to public health worldwide. Nurses play an important role in this epidemic. However, available data on the mental health among these nurses are limited. DESIGN: A descriptive, cross-sectional survey was performed. METHODS: An online questionnaire was completed by 200 nurses who went to Wuhan to help to fight against COVID-19 from another province. Data collection tools include the Chinese version of the Stress Overload Scale (SOS), the Self-Rating Anxiety Scale (SAS) and General Self-Efficacy Scale (GSES). Descriptive, single-factor correlation and multiple regression analyses were used in exploring related influencing factors. Reporting followed the STROBE guidelines. RESULTS: The scores of SAS, SOS and GSES range from 20 to 80, 22 to 110 and 10 to 40, respectively, and the SAS (31.79 ± 7.32) and SOS (40.19 ± 12.92) and GSES scores (24.83 ± 6.60) were obtained. Anxiety was positively correlated with stress (r = .679, p < .001) but negatively correlated with self-efficacy (r = -.326, p < .001). Multiple regression analysis showed that professional qualification, sleep, stress and self-efficacy were the main factors affecting nurse anxiety (p = .006, <.001, <.001, .039, respectively). CONCLUSIONS: Nurses who are supporting Wuhan in fighting against COVID-19 were under a low level of anxiety. RELEVANCE TO CLINICAL PRACTICE: The current study suggests work stress reduction might be a key factor in reducing anxiety and maintaining mental health to support nurses who are fighting against COVID-19 infection.


Assuntos
COVID-19/psicologia , Saúde Mental/estatística & dados numéricos , Recursos Humanos de Enfermagem/psicologia , Estresse Ocupacional/psicologia , Autoeficácia , Adulto , Ansiedade/psicologia , COVID-19/enfermagem , China/epidemiologia , Estudos Transversais , Epidemias , Feminino , Humanos , Masculino , Recursos Humanos de Enfermagem/estatística & dados numéricos , Inquéritos e Questionários
18.
J Nurs Manag ; 28(5): 1002-1009, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32255222

RESUMO

AIMS: To investigate the work stress among Chinese nurses who are supporting Wuhan in fighting against Coronavirus Disease 2019 (COVID-19) infection and to explore the relevant influencing factors. BACKGROUND: The COVID-19 epidemic has posed a major threat to public health. Nurses have always played an important role in infection prevention, infection control, isolation, containment and public health. However, available data on the work stress among these nurses are limited. METHODS: A cross-sectional survey. An online questionnaire was completed by 180 anti-epidemic nurses from Guangxi. Data collection tools, including the Chinese version of the Stress Overload Scale (SOS) and the Self-rating Anxiety Scale (SAS), were used. Descriptive single factor correlation and multiple regression analyses were used in exploring the related influencing factors. RESULTS: The SOS (39.91 ± 12.92) and SAS (32.19 ± 7.56) scores of this nurse group were positively correlated (r = 0.676, p < .05). Multiple regression analysis showed that only children, working hours per week and anxiety were the main factors affecting nurse stress (p = .000, .048, .000, respectively). CONCLUSIONS: Nurses who fight against COVID-19 were generally under pressure. IMPLICATIONS FOR NURSING MANAGEMENT: Nurse leaders should pay attention to the work stress and the influencing factors of the nurses who are fighting against COVID-19 infection, and offer solutions to retain mental health among these nurses.


Assuntos
Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/enfermagem , Epidemias/prevenção & controle , Recursos Humanos de Enfermagem/psicologia , Estresse Ocupacional/epidemiologia , Pneumonia Viral/epidemiologia , Pneumonia Viral/enfermagem , Adulto , COVID-19 , China/epidemiologia , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Recursos Humanos de Enfermagem/estatística & dados numéricos , Pandemias , Fatores de Risco , Adulto Jovem
19.
J Biol Chem ; 293(37): 14507-14519, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30049796

RESUMO

Free all-trans-retinal (atRAL) and retinal pigment epithelium (RPE) lipofuscin are both considered to play etiological roles in Stargardt disease and age-related macular degeneration. A2E and all-trans-retinal dimer (atRAL-dimer) are two well characterized bisretinoid constituents of RPE lipofuscin. In this study, we found that, after treatment of primary porcine RPE (pRPE) cells with atRAL, atRAL-dimer readily formed and accumulated in a concentration- and time-dependent manner, but A2E was barely detected. Cell-based assays revealed that atRAL, the precursor of atRAL-dimer, significantly altered the morphology of primary pRPE cells and decreased cell viability at a concentration of 80 µm regardless of light exposure. By contrast, atRAL-dimer was not cytotoxic and phototoxic to primary pRPE cells. Compared with atRAL and A2E, atRAL-dimer was more vulnerable to light, followed by the generation of its photocleaved products. Moreover, we observed the presence of atRAL-dimer in reaction mixtures of atRAL with porcine rod outer segments (ROS), RPE/choroid, or neural retina. Taken together, we here proposed an alternative metabolic/antidotal pathway of atRAL in the retina: atRAL that evades participation of the visual (retinoid) cycle undergoes a condensation reaction to yield atRAL-dimer in both ROS and RPE. Translocation of atRAL, all-trans N-retinylidene-phosphatidylethanolamine (NR-PE), atRAL-dimer, and photocleavage products of atRAL-dimer from ROS into RPE is accomplished by phagocytosing shed ROS on a daily basis. Without causing damage to RPE cells, light breaks up total atRAL-dimer within RPE cells to release low-molecular-weight photocleavage fragments. The latter, together with ROS-atRAL-dimer photocleavage products, may easily move across membranes and thereby be metabolically eliminated.


Assuntos
Epitélio Pigmentado da Retina/metabolismo , Retinaldeído/análogos & derivados , Retinaldeído/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Hidrólise , Luz , Redes e Vias Metabólicas , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos da radiação , Segmento Externo da Célula Bastonete/metabolismo , Suínos , Espectrometria de Massas em Tandem
20.
Langmuir ; 35(20): 6676-6682, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31039611

RESUMO

It is well-known that vesicles serve as an excellent delivery platform for hydrophilic drugs. However, there is still a lack of a general and effective platform for hydrophobic drug loading. We herein disclose that water-soluble cross-linked reverse vesicles (cRVs) constructed from anionic surfactant 1, a counterpart of normal vesicles, would be excellent vehicles for hydrophobic drugs, the drug loading content (DLC) for which arrived up to 21.1%, 19.8%, and 25.8%, respectively, for three anticancer drugs, paclitaxel, camptothecin, and carmofur. This represents a general drug carrier with high drug loading content for various hydrophobic drugs without the assistance of other external forces. In addition to drug loading superiority, the cRVs were also characterized by robust stability, specific stimulus response, easy postfunctionalization, and good biocompatibility and thus are promising candidates for drug delivery systems.


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Tensoativos/química , Interações Hidrofóbicas e Hidrofílicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA