Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2400978, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593307

RESUMO

Lead (Pb) poisoning and CO2-induced global warming represent two exemplary environmental and energy issues threatening humanity. Various biomass-derived materials are reported to take up Pb and convert CO2 electrochemically into low-valent carbon species, but these works address the problems separately rather than settle the issues simultaneously. In this work, cheap, natural ellagic acid (EA) extracted from common plants is adopted to assemble a stable metal-organic framework (MOF), EA-Pb, by effective capture of Pb2+ ions in an aqueous medium (removal rate close to 99%). EA-Pb represents the first structurally well-defined Pb-based MOF showing selective electrocatalytic CO2-to-HCOO- conversion with Faradaic efficiency (FE) of 95.37% at -1.08 V versus RHE. The catalytic mechanism is studied by 13CO2 labeling, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and theoretical calculation. The use of EA-Pb as an electrocatalyst for CO2 reduction represents a 2-in-1 solution of converting detrimental wastes (Pb2+) as well as natural resources (EA) into wealth (electrocatalytic EA-Pb) for addressing the global warming issue.

2.
Arch Microbiol ; 206(5): 222, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642140

RESUMO

Animal feed is vulnerable to fungal infections, and the use of bio-preserving probiotics has received increasing attention. In contrast to Lactobacillus and Bifidobacteria spp., fewer Bacillus spp. have been recognized as antifungal probiotics. Therefore, our objective was to screen antifungal strains and provide more Bacillus candidates to bridge this gap. Here, we screened 56 bacterial strains for cyclic lipopeptide genes and conducted an antifungal assay with Aspergillus niger as a representative fungus. We found that a Bacillus strain Bacillus amyloliquefaciens PM415, isolated from pigeon manure, exhibited the highest fungal inhibition activity as demonstrated by the confrontation assay and morphological observation under scanning electron microscope (SEM). Preliminary safety assessment and probiotic characterization revealed its non-pathogenic feature and stress tolerance capability. Whole genome sequencing of Bacillus amyloliquefaciens PM415 revealed a genome size of 4.16 Mbp and 84 housekeeping genes thereof were used for phylogenetic analysis showing that it is most closely related to Bacillus amyloliquefaciens LFB112. The in silico analysis further supported its non-pathogenic feature at the genomic level and revealed potential biosynthetic gene clusters responsible for its antifungal property. RNA-seq analysis revealed genome-wide changes in transportation, amino acid metabolism, non-ribosomal peptides (NRPs) biosynthesis and glycan degradation during fungal antagonism. Our results suggest that Bacillus amyloliquefaciens PM415 is a safe and effective probiotic strain that can prevent fungal growth in animal feeds.


Assuntos
Bacillus amyloliquefaciens , Bacillus , Probióticos , Animais , Bacillus amyloliquefaciens/química , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Filogenia
3.
Mol Ther ; 31(12): 3594-3612, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37838829

RESUMO

Osteoarthritis (OA) is the most common joint disease, but no disease-modifying drugs have been approved for OA treatment. Mitophagy participates in mitochondrial homeostasis regulation by selectively clearing dysfunctional mitochondria, which might contribute to cartilage degeneration in OA. Here, we provide evidence of impaired mitophagy in OA chondrocytes, which exacerbates chondrocyte degeneration. Among the several classic mitophagy-regulating pathways and receptors, we found that FUNDC1 plays a key role in preserving chondrocyte homeostasis by inducing mitophagy. FUNDC1 knockdown in vitro and knockout in vivo decreased mitophagy and exacerbated mitochondrial dysfunction, exacerbating chondrocyte degeneration and OA progression. FUNDC1 overexpression via intra-articular injection of adeno-associated virus alleviated cartilage degeneration in OA. Mechanistically, our study demonstrated that PFKP interacts with and dephosphorylates FUNDC1 to induce mitophagy in chondrocytes. Further analysis identified KD025 as a candidate drug for restoring chondrocyte mitophagy by increasing the FUNDC1-PFKP interaction and thus alleviating cartilage degeneration in mice with DMM-induced OA. Our study highlights the role of the FUNDC1-PFKP interaction in chondrocyte homeostasis via mitophagy induction and identifies KD025 as a promising agent for treating OA by increasing chondrocyte mitophagy.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Camundongos , Mitofagia , Cartilagem Articular/metabolismo , Apoptose , Osteoartrite/terapia , Osteoartrite/metabolismo , Condrócitos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo
4.
J Hum Genet ; 68(1): 11-16, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36316471

RESUMO

The vast majority of epidemiological studies suggested a link between systemic lupus erythematosus (SLE) and major depressive disorder (MDD). However, the causality for SLE on the risk of MDD remained unknown due to confounding factors or reverse causality. Herein, we investigated the causality between SLE and MDD in those of European ancestry by a Mendelian randomization (MR) approach. Summary genetic data of cases with SLE/MDD were derived from independent largest public genome-wide association study. Forty-six single nucleotide polymorphisms associated with SLE were used as instrumental variables. The main causal inference was carried out using the MRE-IVW method. Additional, reverse-direction MR and multivariable MR analyses were further performed. Result indicated that SLE was causally associated with a lower risk of MDD (using the MRE-IVW method, odds ratio [OR] = 0.983, 95% confidence interval [CI] = 0.974-0.991, p = 1.18 × 10-4). Complementary analysis found no heterogeneity or horizontal pleiotropy. Multivariate MR analysis yielded consistent results (OR = 0.981; 95% CI = 0.969-0.993; p = 2.75 × 10-3). Reverse-direction MR analysis suggested non-causal relationship of MDD on the risk of SLE (using the IVW method, OR = 0.846, 95% CI = 0.345-2.072; p = 0.714). Thus, this is the first study providing evidence of potential causal links between SLE and MDD and further related research is needed.


Assuntos
Transtorno Depressivo Maior , Lúpus Eritematoso Sistêmico , Humanos , Transtorno Depressivo Maior/epidemiologia , Transtorno Depressivo Maior/genética , Análise da Randomização Mendeliana/métodos , Estudo de Associação Genômica Ampla , Causalidade , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/epidemiologia , Lúpus Eritematoso Sistêmico/genética , Polimorfismo de Nucleotídeo Único
5.
Eur J Clin Invest ; 53(3): e13894, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36256472

RESUMO

BACKGROUND: The causal inference between leisure sedentary behaviour (LSB) and rheumatoid arthritis (RA) is still controversial because of potential residual confounding and reverse causality. METHODS: The present study used publicly available large-scale genome-wide association studies (GWAS) of LSB (television watching, computer use, and driving) and RA to perform a two-sample Mendelian randomization (MR) study to evaluate the causal effect of LSB on the risk of RA. We detected significant causal associations using the multiplicative random effects-inverse variance weighted (MRE-IVW) method, the maximum likelihood, robust adjusted profile scores, the weighted median, MR-Egger regression, and several complementary sensitivity analyses. Risk factor analysis was also conducted to further investigate potential mediators linking causal inference. RESULTS: Increased genetic liability to leisure television watching was significantly associated with a higher risk of RA (MRE-IVW method; OR = 2.46, 95% CI 1.77-3.41; p = 8.35 × 10-8 ). MR estimates indicated that prolonged leisure computer use was causally associated with a lower risk of RA (MRE-IVW method; OR = 0.23, 95% CI 0.12-0.46; p = 2.19 × 10-5 ). However, we found no evidence for a causal effect of leisure driving on the risk of RA (MRE-IVW method; OR = 0.59, 95% CI 0.10-3.41; p = 0.557). No pleiotropy was detected by the sensitivity analysis. CONCLUSIONS: This study supports a causal association between prolonged leisure television watching and an increased risk of RA. Additionally, prolonged computer use might be a protective factor for RA.


Assuntos
Artrite Reumatoide , Comportamento Sedentário , Humanos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Artrite Reumatoide/etiologia , Artrite Reumatoide/genética , Fatores de Risco
6.
Inorg Chem ; 60(1): 161-166, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33306390

RESUMO

The cruciform linker molecule here features two designer functions: the pyrazole donors for framework construction, and the vicinal alkynyl units for benzannulation to form nanographene units into the Ni8-pyrazolate scaffold. Unlike the full 12 connections of the Ni8(OH)4(H2O)2 clusters in other Ni8-pyrazolate networks, significant linker deficiency was observed here, leaving about half of the Ni(II) sites capped by acetate ligands, which can be potentially removed to open the metal sites for reactivity. The crystalline Ni8-pyrazolate scaffold also retains the crystalline order even after thermal treatments (up to 300 °C) that served to partially graphitize the neighboring alkyne units. The resultant nanographene components enhance the electroactive properties of the porous hosts, achieving hydrogen evolution reaction (HER) activity that rivals that of topical nickel/palladium-enabled materials.

7.
Molecules ; 26(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34443631

RESUMO

A novel Zn(II) metal-organic framework [Zn4O(C30H12F4O4S8)3]n, namely ZnBPD-4F4TS, has been constructed from a fluoro- and thiophenethio-functionalized ligand 2,2',5,5'-tetrafluoro-3,3',6,6'-tetrakis(2-thiophenethio)-4,4'-biphenyl dicarboxylic acid (H2BPD-4F4TS). ZnBPD-4F4TS shows a broad green emission around 520 nm in solid state luminescence, with a Commission International De L'Eclairage (CIE) coordinate at x = 0.264, y = 0.403. Since d10-configured Zn(II) is electrochemically inert, its photoluminescence is likely ascribed to ligand-based luminescence which originates from the well-conjugated system of phenyl and thiophenethio moieties. Its luminescent intensities diminish to different extents when exposed to various metal ions, indicating its potential as an optical sensor for detecting metal ion species. Furthermore, ZnBPD-4F4TS and its NH4Br-loaded composite, NH4Br@ZnBPD-4F4TS, were used for proton conduction measurements in different relative humidity (RH) levels and temperatures. Original ZnBPD-4F4TS shows a low proton conductivity of 9.47 × 10-10 S cm-1 while NH4Br@ZnBPD-4F4TS shows a more than 25,000-fold enhanced value of 2.38 × 10-5 S cm-1 at 40 °C and 90% RH. Both of the proton transport processes in ZnBPD-4F4TS and NH4Br@ZnBPD-4F4TS belong to the Grotthuss mechanism with Ea = 0.40 and 0.32 eV, respectively.

8.
Ann Rheum Dis ; 79(3): 408-417, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31871141

RESUMO

OBJECTIVES: The heterogeneity of meniscus cells and the mechanism of meniscus degeneration is not well understood. Here, single-cell RNA sequencing (scRNA-seq) was used to identify various meniscus cell subsets and investigate the mechanism of meniscus degeneration. METHODS: scRNA-seq was used to identify cell subsets and their gene signatures in healthy human and degenerated meniscus cells to determine their differentiation relationships and characterise the diversity within specific cell types. Colony-forming, multi-differentiation assays and a mice meniscus injury model were used to identify meniscus progenitor cells. We investigated the role of degenerated meniscus progenitor (DegP) cell clusters during meniscus degeneration using computational analysis and experimental verification. RESULTS: We identified seven clusters in healthy human meniscus, including five empirically defined populations and two novel populations. Pseudotime analysis showed endothelial cells and fibrochondrocyte progenitors (FCP) existed at the pseudospace trajectory start. Melanoma cell adhesion molecule ((MCAM)/CD146) was highly expressed in two clusters. CD146+ meniscus cells differentiated into osteoblasts and adipocytes and formed colonies. We identified changes in the proportions of degenerated meniscus cell clusters and found a cluster specific to degenerative meniscus with progenitor cell characteristics. The reconstruction of four progenitor cell clusters indicated that FCP differentiation into DegP was an aberrant process. Interleukin 1ß stimulation in healthy human meniscus cells increased CD318+ cells, while TGFß1 attenuated the increase in CD318+ cells in degenerated meniscus cells. CONCLUSIONS: The identification of meniscus progenitor cells provided new insights into cell-based meniscus tissue engineering, demonstrating a novel mechanism of meniscus degeneration, which contributes to the development of a novel therapeutic strategy.


Assuntos
Diferenciação Celular/genética , Menisco/citologia , Células-Tronco/metabolismo , Animais , Progressão da Doença , Células Endoteliais/metabolismo , Humanos , Camundongos , RNA-Seq , Análise de Sequência de RNA , Análise de Célula Única
9.
Inorg Chem ; 59(10): 7097-7102, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32352762

RESUMO

The series of highly stable porous solids here feature systematic, regiospecific sulfur substitutions on the organic linkers for versatile functions. One major surprise lies in the controllable sequential reactions between sodium thiomethoxide (NaSMe) and octafluorobiphenyl-4,4'-dicarboxylic acid (H2bpdc-8F; this was readily made without precious metal catalysts). Namely, 3, 4, 6, and 8 methylthio-substitutions can be respectively achieved with regiospecificity (i.e., to produce the four molecules H2bpdc-3S5F, H2bpdc-4S4F, H2bpdc-6S2F, H2bpdc-8MS). A second surprise lies in their persistent formation of the UiO-67-type net with Zr(IV) ions, e.g., even in the case of the fully sulfurated H2bpdc-8MS. In addition to the remarkable breadth of functional control, all the Zr(IV)-based crystalline solids here are stable in boiling water (e.g., for 24 h) and in air as solventless, activated porous solids. Moreover, the thioether groups allow for convenient H2O2 oxidation to fine-tune the hydrophilicity and luminescence properties and improve proton conductivity.

10.
Chem Rev ; 118(18): 8889-8935, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30130099

RESUMO

Metal-organic complexes assembled from coordinative interactions are known to be able to display a wide range of photoluminescent behaviors benefiting from an extensive number of metal ions, organic linkers, and inclusion guests, depending on the multifaceted nature of their chemical structures and photophysical properties. In the past two decades, the white-light-emitting (WLE) and photoluminescent color-tuning (PLCT) materials based on the single-phase metal-organic coordination assemblies have merited particular attention and gained substantial advances. In this review, we give an overview of recent progress in this field, placing emphasis on the WLE and PLCT properties realized in the single-phase materials, which covers the origin, generation, and manipulation of different types of photoluminescence (PL) derived from ligand-centered (LC), metal/cluster-centered (MC or CC), excimer/exciplex-based (EX), metal-to-ligand or ligand-to-metal charge-transfer-based (MLCT or LMCT), or guest-included emissions. The coordination assemblies in this topic can be generally classified into three categories [(1) mono/homometallic coordination assemblies based on main group (s,p-block), transition (d-block), or lanthanide (f-block) metal centers, (2) s/p-f-, d-f-, or f-f-type heterometallic coordination assemblies, and (3) guest-included coordination assemblies] for which WLE and PLCT properties can be achieved by virtue of either a wide-band/overlapped emission covering the whole visible spectrum from a single emitting center or a combination of complementary color emissions from multiple emitting centers/origins. Some state-of-the-art assembly methods and successful design models relevant to the above three categories are elaborated to demonstrate how to achieve efficient and controllable white-light emission in a single-phase material through a tunable PL approach. Potential applications in the fields of lighting and displaying, sensing and detecting, and barcoding and patterning are surveyed, and at the end, possible prospects and challenges for future development along this line are proposed.

11.
J Cell Biochem ; 120(1): 171-181, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30277597

RESUMO

The aim of the current study was to compare the expression of microRNAs (miRNAs) in exosomes derived from human bone mesenchymal stem cells (hBMSCs) with and without chondrogenic induction. Exosomes derived from hBMSCs were isolated and identified. Microarray analysis was performed to compare miRNA expression between exosomes derived from hBMSCs with and without chondrogenic induction, and quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the differentially expressed miRNAs. hBMSCs were transfected with miRNA mimic to extract miRNA-overexpressed exosomes. The results showed that most exosomes exhibited a cup-shaped or round-shaped morphology with a diameter of approximately 50-200 nm and expressed CD9 and CD63. We detected 141 miRNAs that were differentially expressed with and without chondrogenic induction by over a twofold change, including 35 upregulated miRNAs, such as miR-1246, miR-1290, miR-193a-5p, miR-320c, and miR-92a, and 106 downregulated miRNAs, such as miR-377-3p and miR-6891-5p. qRT-PCR analysis validated these results. Exosomes derived from hBMSCs overexpressing miR-320c were more efficient than normal exosomes derived from control hBMSCs at promoting osteoarthritis chondrocyte proliferation, down-regulated matrix metallopeptidase 13 and up-regulated (sex determining region Y)-box 9 expression during hBMSC chondrogenic differentiation. In conclusion, we identified a group of upregulated miRNAs in exosomes derived from hBMSCs with chondrogenic induction that may play an important role in mesenchymal stem cell-derived exosomes in cartilage regeneration and, ultimately, the treatment of arthritis. We demonstrated the potential of these modified exosomes in the development of novel therapeutic strategies.


Assuntos
Diferenciação Celular/fisiologia , Condrogênese/fisiologia , Exossomos/metabolismo , Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , Regulação para Cima/genética , Adulto , Idoso , Artrite/terapia , Osso e Ossos/citologia , Cartilagem Articular/patologia , Células Cultivadas , Condrócitos/metabolismo , Voluntários Saudáveis , Humanos , Masculino , Metaloproteinase 13 da Matriz/genética , Pessoa de Meia-Idade , Mimetismo Molecular , Fatores de Transcrição SOX9/genética , Transfecção , Adulto Jovem
12.
J Cell Mol Med ; 22(11): 5354-5366, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30063117

RESUMO

MicroRNAs play critical roles in the pathogenesis of osteoarthritis, the most common chronic degenerative joint disease. Exosomes derived from miR-95-5p-overexpressing primary chondrocytes (AC-miR-95-5p) may be effective in treating osteoarthritis. Increased expression of HDAC2/8 occurs in the tissues and chondrocyte-secreted exosomes of patients with osteoarthritis and mediates cartilage-specific gene expression in chondrocytes. We have been suggested that exosomes derived from AC-miR-95-5p (AC-miR-95-5p-Exos) would enhance chondrogenesis and prevent the development of osteoarthritis by directly targeting HDAC2/8. Our in vitro experiments showed that miR-95-5p expression was significantly lower in osteoarthritic chondrocyte-secreted exosomes than in normal cartilage. Treatment with AC-miR-95-5p-Exos promoted cartilage development and cartilage matrix expression in mesenchymal stem cells induced to undergo chondrogenesis and chondrocytes, respectively. In contrast, co-culture with exosomes derived from chondrocytes transfected with an antisense inhibitor of miR-95-5p (AC-anti-miR-95-5p-Exos) prevented chondrogenic differentiation and reduced cartilage matrix synthesis by enhancing the expression of HDAC2/8. MiR-95-5p suppressed the activity of reporter constructs containing the 3'-untranslated region of HDAC2/8, inhibited HDAC2/8 expression and promoted cartilage matrix expression. Our results suggest that AC-miR-95-5p-Exos regulate cartilage development and homoeostasis by directly targeting HDAC2/8. Thus, AC-miR-95-5p-Exos may act as an HDAC2/8 inhibitor and exhibit potential as a disease-modifying osteoarthritis drug.


Assuntos
Histona Desacetilase 2/genética , Histona Desacetilases/genética , MicroRNAs/genética , Osteoartrite/genética , Proteínas Repressoras/genética , Regiões 3' não Traduzidas/genética , Cartilagem Articular/metabolismo , Diferenciação Celular/genética , Condrócitos/metabolismo , Condrogênese/genética , Exossomos/genética , Exossomos/metabolismo , Feminino , Expressão Gênica/genética , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Osteoartrite/patologia , Cultura Primária de Células
13.
J Cell Biochem ; 119(6): 4775-4782, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29323744

RESUMO

Micro(mi)RNAs are small, non-coding RNA molecules known to play a significant role in osteoarthritis (OA) initiation and development, and similar to matrix metalloproteinases (MMPs), they participate in cartilage degeneration and cleave multiple extracellular matrices. The aim of this study was to determine whether the expression of MMP-19 in interleukin (IL)-1ß-induced human chondrocytes is directly regulated by miR-193b-3p. Expression levels of miR-193b-3p and MMP-19 in normal and osteoarthritis (OA) human cartilage, and interleukin-1 ß (IL-1ß)-induced human chondrocytes were determined by real-time polymerase chain reaction. Additionally, expression level of MMP-19 in IL-1ß-induced human chondrocytes was estimated by Western blotting and immunohistochemistry analyses. The effect of miR-193b-3p on MMP-19 expression was evaluated using transient transfection of normal human chondrocytes with miR-193b-3p mimic or its antisense inhibitor (miR-193b-3p inhibitor), and siMMP-19. The putative binding site of miR-193b-3p in the 3'-untranslated region (UTR) of MMP-19 mRNA was validated by luciferase reporter assay. miR-193b-3p expression was reduced in OA cartilage compared to that in normal chondrocytes, while the opposite was observed for MMP-19. Upregulation of MMP-19 expression was correlated with downregulation of miR-193b-3p in IL-1ß-stimulated normal chondrocytes. Increase in miR-193b-3p levels was associated with silencing of MMP-19. Overexpression of miR-193b-3p suppressed the activity of the reporter construct containing the 3'-UTR of human MMP-19 mRNA and inhibited the IL-1ß-induced expression of MMP-19 and iNOS in chondrocytes, while treatment with miR-193b-3p inhibitor enhanced MMP-19 expression. MiR-193b-3p is an important regulator of MMP-19 in human chondrocytes and may relieve the inflammatory response in OA.


Assuntos
Condrócitos/metabolismo , Regulação Enzimológica da Expressão Gênica , Interleucina-1beta/metabolismo , Metaloproteinases da Matriz Secretadas/biossíntese , MicroRNAs/metabolismo , Osteoartrite do Joelho/metabolismo , Regulação para Cima , Idoso , Condrócitos/patologia , Feminino , Humanos , Interleucina-1beta/genética , Masculino , Metaloproteinases da Matriz Secretadas/genética , MicroRNAs/genética , Osteoartrite do Joelho/patologia
14.
Cell Physiol Biochem ; 51(2): 909-923, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30466085

RESUMO

BACKGROUND/AIMS: Cyclin-dependent kinase 6 (CDK6) regulates inflammatory response and cell differentiation. This study sought to determine whether CDK6 and miR-320c co-regulate chondrogenesis and inflammation. METHODS: Utilizing quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC), CDK6 and miR-320c expression were assessed in a micromass culture of human bone mesenchymal stem cells that underwent chondrogenesis in vitro as well as in chondrocytes from E16.5 mouse forelimbs. Normal chondrocytes were transfected with miR-320c mimic, miR-320c inhibitor, or CDK6-siRNA. Luciferase reporter assay results confirmed that miR-320c directly targets CDK6 by interacting with the 3'-untranslated region (3'-UTR) of its mRNA. qRT-PCR, Western blotting, and Cell Counting Kit-8 were subsequently used to evaluate the effects of miR-320c overexpression and CDK6 inhibition on inflammatory factor expression, as well as to investigate the effects of NF-kB and MAPK signaling pathway activation on IL-1ß-induced chondrocyte inflammation. RESULTS: Our results show that miR-320c expression increased during the middle stage and decreased during the late stage of hBMSC chondrogenic differentiation. In contrast, CDK6 expression decreased during the middle stage and increased during the late stage of hBMSC chondrogenic differentiation. Moreover, CDK6 expression increased in severe OA cartilage and in hypertrophic chondrocytes of mouse forelimbs at E16.5. Results of the luciferase reporter assay showed that miR-320c modulated CDK6 expression by binding to the 3'-UTR of its mRNA. miR-320c overexpression and CDK6 inhibition repressed IL-1ß-induced expression of inflammatory factors and regulated the NF-kB signaling pathway. CONCLUSION: CDK6 and miR-320c co-regulate hBMSC chondrogenesis and IL-1ß-induced chondrocyte inflammation through the NF-kB signaling pathway, suggesting that miR-320c and CDK6 inhibitors can be used to repress catabolism in human chondrocytes.


Assuntos
Quinase 6 Dependente de Ciclina/metabolismo , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Regiões 3' não Traduzidas , Aminopiridinas/farmacologia , Animais , Antagomirs/metabolismo , Benzimidazóis/farmacologia , Cartilagem Articular/citologia , Células Cultivadas , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Colágeno Tipo II/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/genética , Humanos , Interleucina-1beta/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Connect Tissue Res ; 59(1): 55-65, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28267379

RESUMO

Purpose/Aim of the study: To evaluate the biomechanical characteristics and biocompatibility of an injectable, biodegradable calcium phosphate cement (CPC) containing poly lactic-co-glycolic acid (PLGA). MATERIALS AND METHODS: A vertebral compression fracture model was established using 20 human cadaveric vertebrae (T11-L3) divided into CPC/PLGA composite versus PMMA groups for biomechanical testing. In addition, 35 New Zealand rabbits were used to evaluate biodegradability and osteoconductive properties of CPC/PLGA using a bone defect model. In vitro cytotoxicity was evaluated by culturing with L929 cells. RESULTS: The CPC/PLGA composite effectively restored vertebral biomechanical properties. Compared with controls, the maximum load and compression strength of the CPC/PLGA group were lower, and stiffness was lower after kyphoplasty (all p <.05). Degradation was much slower in the control CPC compared with CPC/PLGA group. The bone tissue percentage in the CPC/PLGA group (44.9 ± 23.7%) was significantly higher compared with control CPC group (25.7 ± 10.9%) (p <.05). The viability of cells cultured on CPC/PLGA was greater than 70% compared with the blanks. CONCLUSIONS: Our biodegradable CPC/PLGA composite showed good biomechanical properties, cytocompatibility, and osteoconductivity and may represent an ideal bone substitute for future applications.


Assuntos
Cimentos Ósseos , Fosfatos de Cálcio , Fraturas por Compressão/terapia , Teste de Materiais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Fraturas da Coluna Vertebral/terapia , Animais , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Linhagem Celular , Modelos Animais de Doenças , Feminino , Fraturas por Compressão/metabolismo , Fraturas por Compressão/patologia , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Coelhos , Fraturas da Coluna Vertebral/metabolismo , Fraturas da Coluna Vertebral/patologia
16.
Inorg Chem ; 57(18): 11436-11442, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30152695

RESUMO

A Co-MOF, [Co3(HL)2·4DMF·4H2O] was simply synthesized through a one-pot solvothermal method. With the semiconductor nature, its band gap was determined to be 2.95 eV by the Kubelka-Munk method. It is the first trinuclear Co-MOF employed for photocatalytic hydrogen evolution and CO2 reduction with cobalt-oxygen clusters as catalytic nodes. Hydrogen evolution experiments indicated the activity was related to the photosensitizer, TEOA, solvents, and size of catalyst. After optimization, the best activity of H2 production was 1102 µmol/(g h) when catalyst was ground and then soaked in photosensitizer solution before photoreaction. To display the integrated design of Co-MOF, we used no additional photosensitizer and cocatalyst in the CO2 reduction system. When -NH2 was used for light absorption and a Co-O cluster was used as catalyst, Co-MOF exhibited an activity of 456.0 µmol/(g h). The photocatalytic mechanisms for hydrogen evolution and CO2 reduction were also proposed.

17.
Biochim Biophys Acta ; 1863(12): 2881-2891, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27638301

RESUMO

Histone acetylation regulated by class I histone deacetylases (HDACs) plays a pivotal role in matrix-specific gene transcription and cartilage development. While we previously demonstrated that microRNA (miR)-455-3p is upregulated during chondrogenesis and can enhance early chondrogenesis, the mechanism underlying this process remains largely unclear. In this study, we characterized the effect of miR-455-3p on histone H3 acetylation and its role during cartilage development and degeneration. We observed that miR-455-3p was highly expressed in proliferating and pre-hypertrophic chondrocytes, while HDAC2 and HDAC8 were primarily expressed in hypertrophic chondrocytes. Meanwhile, miR-455-3p suppressed the activity of reporter constructs containing the 3'-untranslated regions of HDAC2/8, inhibited HDAC2/8 expression and promoted histone H3 acetylation at the collagen 2 (COL2A1) promoter in human SW1353 chondrocyte-like cells. Treatment with the HDAC inhibitor trichostatin A (TSA) resulted in increased expression of cartilage-specific genes and promoted glycosaminoglycan deposition. Moreover, TSA inhibited matrix metalloproteinase 13 (Mmp13) expression and promoted nuclear translocation of SOX9 in interleukin-1-treated primary mouse chondrocytes. Lastly, knockdown of HDAC2/3/8 increased SRY (sex-determining region Y)-box 9 (SOX9) and decreased Runt-related transcription factor 2 (RUNX2) expression. Taken together, these findings suggest that miR-455-3p plays a critical role during chondrogenesis by directly targeting HDAC2/8 and promoting histone H3 acetylation, which raises possibilities of using miR-455-3p to influence chondrogenesis and cartilage degeneration.


Assuntos
Condrócitos/metabolismo , Condrogênese/genética , Histonas/metabolismo , MicroRNAs/genética , Processamento de Proteína Pós-Traducional , Regiões 3' não Traduzidas , Acetilação/efeitos dos fármacos , Animais , Sequência de Bases , Sítios de Ligação , Cartilagem/citologia , Cartilagem/metabolismo , Linhagem Celular Tumoral , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Histona Desacetilase 2/antagonistas & inibidores , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/genética , Humanos , Ácidos Hidroxâmicos/farmacologia , Interleucina-1/farmacologia , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Camundongos , MicroRNAs/metabolismo , Cultura Primária de Células , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição SOX9/antagonistas & inibidores , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais
18.
Cell Physiol Biochem ; 44(1): 38-52, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29241192

RESUMO

BACKGROUND/AIMS: Aggrecanase-1 (ADAMTS-4) and aggrecanase-2 (ADAMTS-5) are secreted enzymes belonging to the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family that play significant roles in the progression of osteoarthritis (OA). Here, we aimed to determine whether the expression of ADAMTS-4/5 in chondrogenesis and inflammation is regulated by microRNA-92a-3p (miR-92a-3p). METHODS: MiR-92a-3p and ADAMTS-4/5 expressions were determined by quantitative polymerase chain reaction (qPCR). To investigate the repressive effect of miR-92a-3p on ADAMTS-4/5 expression, chondrogenic human mesenchymal stem cells (hMSCs) and human chondrocytes were transfected with mature miR-92a-3p or an antisense inhibitor (anti-miR-92a-3p), respectively. ADAMTS-4/5 protein production was quantified by enzyme-linked immunosorbent assay (ELISA), and miR-92a-3p involvement in IL-1ß-mediated catabolic effects was examined by immunoblotting. The roles of activated MAP kinases (MAPK) and nuclear factor (NF)-κB were evaluated by using specific inhibitors. Interaction between miR-92a-3p and its putative binding site in the 3'-untranslated region (3'-UTR) of ADAMTS-4/5 mRNA was confirmed by luciferase reporter assay. RESULTS: miR-92a-3p expression was elevated in chondrogenic hMSCs, with significantly lower expression in OA cartilage than in normal cartilage. Stimulation with IL-1ß significantly reduced miR-92a-3p expression in primary human chondrocytes (PHCs). Transfection of chondrocytes with miR-92a-3p downregulated IL-1ß-induced ADAMTS-4/5 expression, and the activity of a reporter construct containing the 3'-UTR of human ADAMTS-4/5 mRNA. MiR-92a-3p expression was suppressed upon IL-1ß-induced activation of MAPK and NF-κB in chondrocytes. CONCLUSION: MiR-92a-3p is an important regulator of ADAMTS-4/5 in human chondrocytes and may contribute to the development of OA.


Assuntos
Proteína ADAMTS4/metabolismo , Proteína ADAMTS5/metabolismo , Condrogênese/efeitos dos fármacos , Condrogênese/genética , Interleucina-1beta/farmacologia , MicroRNAs/metabolismo , Proteína ADAMTS4/antagonistas & inibidores , Proteína ADAMTS4/genética , Proteína ADAMTS5/antagonistas & inibidores , Proteína ADAMTS5/genética , Adulto , Idoso , Antagomirs/metabolismo , Células da Medula Óssea/citologia , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Células Cultivadas , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Pessoa de Meia-Idade , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia
19.
Cell Physiol Biochem ; 42(3): 1037-1050, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28662497

RESUMO

BACKGROUND/AIMS: Long noncoding RNAs (lncRNAs) play important roles in stem cell differentiation. However, their role in osteogenesis of human adipose-derived stem cells (ASCs), a promising cell source for bone regeneration, remains unknown. Here, we investigated the expression profile and potential roles of lncRNAs in osteogenic differentiation of human ASCs. METHODS: Human ASCs were induced to differentiate into osteoblasts in vitro, and the expression profiles of lncRNAs and mRNAs in undifferentiated and osteogenic differentiated ASCs were obtained by microarray. Bioinformatics analyses including subgroup analysis, gene ontology analysis, pathway analysis and co-expression network analysis were performed. The function of lncRNA H19 was determined by in vitro knockdown and overexpression. Quantitative reverse transcription polymerase chain reaction was utilized to examine the expression of selected genes. RESULTS: We identified 1,460 upregulated and 1,112 downregulated lncRNAs in osteogenic differentiated human ASCs as compared with those of undifferentiated cells (Fold change ≥ 2.0, P < 0.05). Among these, 94 antisense lncRNAs, 85 enhancer-like lncRNAs and 160 lincRNAs were further recognized. We used 12 lncRNAs and 157 mRNAs to comprise a coding-non-coding gene expression network. Additionally, silencing of H19 caused a significantly increase in expression of osteogenesis-related genes, including ALPL and RUNX2, while a decrease was observed after H19 overexpression. CONCLUSION: This study revealed for the first time the global expression profile of lncRNAs involved in osteogenic differentiation of human ASCs and provided a foundation for future investigations of lncRNA regulation of human ASC osteogenesis.


Assuntos
Tecido Adiposo/citologia , Osteoblastos/citologia , Osteogênese , RNA Longo não Codificante/genética , Células-Tronco/citologia , Adulto , Diferenciação Celular , Células Cultivadas , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Pessoa de Meia-Idade , Osteoblastos/metabolismo , RNA Mensageiro/genética , Células-Tronco/metabolismo , Adulto Jovem
20.
Int J Mol Sci ; 17(9)2016 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-27563877

RESUMO

Chondrocyte hypertrophy, regulated by Runt-related transcription factor 2 (RUNX2) and matrix metalloproteinase 13 (MMP13), is a crucial step in cartilage degeneration and osteoarthritis (OA) pathogenesis. We previously demonstrated that microRNA-381 (miR-381) promotes MMP13 expression during chondrogenesis and contributes to cartilage degeneration; however, the mechanism underlying this process remained unclear. In this study, we observed divergent expression of miR-381 and histone deacetylase 4 (HDAC4), an enzyme that directly inhibits RUNX2 and MMP13 expression, during late-stage chondrogenesis of ATDC5 cells, as well as in prehypertrophic and hypertrophic chondrocytes during long bone development in E16.5 mouse embryos. We therefore investigated whether this miRNA regulates HDAC4 expression during chondrogenesis. Notably, overexpression of miR-381 inhibited HDAC4 expression but promoted RUNX2 expression. Moreover, transfection of SW1353 cells with an miR-381 mimic suppressed the activity of a reporter construct containing the 3'-untranslated region (3'-UTR) of HDAC4. Conversely, treatment with a miR-381 inhibitor yielded increased HDAC4 expression and decreased RUNX2 expression. Lastly, knockdown of HDAC4 expression resulted in increased RUNX2 and MMP13 expression in SW1353 cells. Collectively, our results indicate that miR-381 epigenetically regulates MMP13 and RUNX2 expression via targeting of HDAC4, thereby suggesting the possibilities of inhibiting miR-381 to control chondrocyte hypertrophy and cartilage degeneration.


Assuntos
Condrócitos/citologia , Condrócitos/metabolismo , Histona Desacetilases/metabolismo , Hipertrofia/metabolismo , MicroRNAs/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Linhagem Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Histona Desacetilases/genética , Hipertrofia/genética , Imuno-Histoquímica , Hibridização In Situ , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Camundongos , MicroRNAs/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA