Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Soft Matter ; 19(24): 4599, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37288567

RESUMO

Correction for 'Concentration and temperature dependent interactions and state diagram of dispersions of copolymer microgels' by José Ruiz-Franco et al., Soft Matter, 2023, 19, 3614-3628, https://doi.org/10.1039/D3SM00120B.

2.
Soft Matter ; 19(20): 3614-3628, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37161724

RESUMO

We investigate by means of small angle neutron scattering experiments and numerical simulations the interactions and inter-particle arrangements of concentrated dispersions of copolymer poly(N-isopropylacrylamide)-poly(ethylene glycol methyl ether methacrylate) (PNIPAM-PEGMA) microgels across the volume phase transition (VPT). The scattering data of moderately concentrated dispersions are accurately modeled at all temperatures by using a star polymer form factor and static structure factors calculated from the effective potential obtained from simulations. Interestingly, for temperatures below the VPT temperature (VPTT), the radius of gyration and blob size of the particles significantly decrease with increasing the effective packing fraction in the non-overlapping regime. This is attributed to the presence of charges in the system associated with the use of an ionic initiator in the synthesis. Simulations using the experimentally corroborated interaction potential are used to explore the state diagram in a wide range of effective packing fractions. Below and slightly above the VPTT, the system undergoes an arrest transition mainly driven by the soft repulsion between the particles. Only well above the VPTT the system is found to phase separate before arresting. Our results highlight the versatility and potential of copolymer PNIPAM-PEGMA microgels to explore different kinds of arrested states balancing attraction and repulsion by changing temperature and packing fraction.

3.
Int J Mol Sci ; 23(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35563114

RESUMO

Hydrogels consist of three-dimensionally crosslinked polymeric chains, are hydrophilic, have the ability to absorb other molecules in their structure and are relatively easy to obtain. However, in order to improve some of their properties, usually mechanical, or to provide them with some physical, chemical or biological characteristics, hydrogels have been synthesized combined with other synthetic or natural polymers, filled with inorganic nanoparticles, metals, and even polymeric nanoparticles, giving rise to composite hydrogels. In general, different types of hydrogels have been synthesized; however, in this review, we refer to those obtained from the thermosensitive polymer poly(N-vinylcaprolactam) (PNVCL) and we focus on the definition, properties, synthesis techniques, nanomaterials used as fillers in composites and mainly applications of PNVCL-based hydrogels in the biomedical area. This type of material has great potential in biomedical applications such as drug delivery systems, tissue engineering, as antimicrobials and in diagnostic and bioimaging.


Assuntos
Hidrogéis , Nanopartículas , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Hidrogéis/uso terapêutico , Nanopartículas/química , Nanopartículas/uso terapêutico , Polímeros/química , Engenharia Tecidual/métodos
4.
Appl Opt ; 58(36): 9955-9966, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31873642

RESUMO

We describe a method for inverting spectroscopic data of the absorption and extinction properties of colloidal samples of resonant particles. We show that, with some prior knowledge, the genetic algorithm employed is able to estimate the probability density function of particle sizes. Since the data are sensitive to the shape and material of the particles, some information about these properties can also be retrieved. The viability of the method is illustrated by inverting numerically generated data, as well as experimental data obtained with specially prepared samples of metallic nanoparticles in aqueous suspension.

5.
PLoS One ; 19(1): e0294874, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38241427

RESUMO

Cancer is the second leading cause of death worldwide. To combat this disease, novel and specialized therapeutic systems are urgently needed. This is the first study to explore a system that combines shark variable domain (Fv) of new antigen receptor (VNAR) antibodies (hereinafter VNARs), PEGylated nanogels (pH-sensitive poly(N,N-diethylaminoethyl methacrylate, PDEAEM), and the anticancer drug 5-fluorouracil (5-FU) to explore its potential applications in colon cancer therapies. Nanogels were functionalized in a scalable reaction with an N-hydroxysuccinimide (NHS)-terminated polyethylene glycol derivative and bioconjugated with shark antibodies. Dynamic light scattering measurements indicated the presence of monodispersed nanogels (74 to 236 nm). All systems maintained the pH-sensitive capacity to increase in size as pH decreased. This has direct implications for the release kinetics of 5-FU, which was released faster at pH 5 than at pH 7.4. After bioconjugation, the ELISA results indicated VNAR presence and carcinoembryonic antigen (CEA) recognition. In vitro evaluations of HCT-116 colon cancer cells indicated that functionalized empty nanogels are not cytotoxic and when loaded with 5-FU, the cytotoxic effect of the drug is preserved. A 15% reduction in cell viability was observed after two hours of contact with bioconjugated nanogels when compared to what was observed with non-bioconjugated nanogels. The prepared nanogel system shows potential as an effective and site-specific nanocarrier with promising applications in in vivo studies of colon cancer therapies.


Assuntos
Antineoplásicos , Neoplasias do Colo , Humanos , Nanogéis/química , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos/química , Polietilenoglicóis/química , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Concentração de Íons de Hidrogênio , Portadores de Fármacos/química
6.
Pharmaceutics ; 15(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37111585

RESUMO

Chemically crosslinked hydrogels based on poly(N-vinylcaprolactam) (PNVCL) were synthetized by a photoinitiated chemical method. A galactose-based monomer, 2-lactobionamidoethyl methacrylate (LAMA), and N-vinylpyrrolidone (NVP) were added with the aim to improve the physical and chemical properties of hydrogels. The effects of both comonomers on the swelling ratio (Q), volume phase transition temperature (VPTT), glass transition temperature (Tg), and Young's moduli by mechanical compression below and above the VPTT were studied. Gold nanorods (GNRDs) and 5-fluorouracil (5FU) were embedded into the hydrogels, to study the drug release profiles with and without the excitation of GNRDs by irradiation in the near-infrared region (NIR). Results showed that the addition of LAMA and NVP increased the hydrogels' hydrophilicity, elasticity, and VPTT. The loading of GNRDs in the hydrogels changed the release rate of 5FU when irradiated intermittently with an NIR laser. The present study reports on the preparation of a hydrogel-based platform of PNVCL-GNRDs-5FU as a potential hybrid anticancer hydrogel for chemo/photothermal therapy that could be applied against skin cancer for topical 5FU delivery.

7.
Pharm Dev Technol ; 17(2): 170-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21047274

RESUMO

Poly(carboxyalkyl methacrylates) were studied as a cationic-drug delivery system, at pH 6.8 and 8.0. Different polymer/drug complexes were used to prepare compressed tablets. By kinetics experiments, we have found that drug release is dependent on both the hydrophobicity of the whole complex and the pH of the environment. Furthermore, a mechanism of dissociation/erosion clearly describes the drug release from a complex formed by a polymer soluble at target pH; otherwise, a mechanism of dissolution/diffusion is depicted. Additionally, we have observed that hydrophilic fillers increase the drug release rate. Since our results using different polymer/drug complexes exhibit pH-sensitive drug release, we propose that the poly(carboxyalkyl methacrylates) have potential as a colon-specific drug-delivery system.


Assuntos
Preparações de Ação Retardada/química , Preparações Farmacêuticas/administração & dosagem , Ácidos Polimetacrílicos/química , Cátions/química , Eletrólitos/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Solubilidade
8.
Pharmaceutics ; 14(3)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35335936

RESUMO

Dual-function nanogels (particle size from 98 to 224 nm) synthesized via surfactant-free emulsion polymerization (SFEP) were tested as smart carriers toward synergistic chemo- and photothermal therapy. Cisplatin (CDDP) or doxorubicin (DOX) and gold nanorods (GNRDs) were loaded into galacto-functionalized PNVCL-based nanogels, where the encapsulation efficiency for CDDP and DOX was around 64 and 52%, respectively. PNVCL-based nanogels were proven to be an efficient delivery vehicle under conditions that mimic the tumor site in vitro. The release of CDDP or DOX was slower at pH 7.4 and 37 °C than at tumor conditions of pH 6 and 40 °C. On the other hand, in the systems with GNRDs at pH 7.4 and 37 °C, the sample was irradiated with a 785 nm laser for 10 min every hour, obtaining that the release profiles were even higher than in the conditions that simulated a cancer tissue (without irradiation). Thus, the present study demonstrates the synergistic effect of chemo- and photothermal therapy as a promising dual function in the potential future use of PNVCL nanogels loaded with GNRDs and CDDP/DOX to achieve an enhanced chemo/phototherapy in vivo.

9.
Macromolecules ; 55(5): 1834-1843, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35283539

RESUMO

We combine small-angle scattering experiments and simulations to investigate the internal structure and interactions of composite poly(N-isopropylacrylamide)-poly(ethylene glycol) (PNIPAM-PEG) microgels. At low temperatures the experimentally determined form factors and the simulated density profiles indicate a loose internal particle structure with an extended corona that can be modeled as a starlike object. With increasing temperature across the volumetric phase transition, the form factor develops an inflection that, using simulations, is interpreted as arising from a conformation in which PEG chains are incorporated in the interior of the PNIPAM network. This gives rise to a peculiar density profile characterized by two dense, separated regions, at odds with configurations in which the PEG chains reside on the surface of the PNIPAM core. The conformation of the PEG chains also have profound effects on the interparticle interactions: Although chains on the surface reduce the solvophobic attraction typically experienced by PNIPAM particles at high temperatures, PEG chains inside the PNIPAM network shift the onset of attractive interaction at even lower temperatures. Our results show that by tuning the morphology of the composite microgels, we can qualitatively change both their structure and their mutual interactions, opening the way to explore new collective behaviors of these objects.

10.
Polymers (Basel) ; 14(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36080684

RESUMO

Mexican oregano (Lippia graveolens) polyphenols have antioxidant and anti-inflammatory potential, but low bioaccessibility. Therefore, in the present work the micro/nano-encapsulation of these compounds in two different matrixes of chitosan (CS) and chitosan-b-poly(PEGMA2000) (CS-b-PPEGMA) is described and assessed. The particle sizes of matrixes of CS (~955 nm) and CS-b-PPEGMA (~190 nm) increased by 10% and 50%, respectively, when the phenolic compounds were encapsulated, yielding loading efficiencies (LE) between 90-99% and 50-60%, correspondingly. The release profiles in simulated fluids revealed a better control of host-guest interactions by using the CS-b-PPEGMA matrix, reaching phenolic compounds release of 80% after 24 h, while single CS retained the guest compounds. The total reducing capacity (TRC) and Trolox equivalent antioxidant capacity (TEAC) of the phenolic compounds (PPHs) are protected and increased (more than five times) when they are encapsulated. Thus, this investigation provides a standard encapsulation strategy and relevant results regarding nutraceuticals stabilization and their improved bioaccessibility.

11.
Polymers (Basel) ; 13(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34771233

RESUMO

In this study, six-arm star-shaped poly(N-vinylcaprolactam) (PNVCL) polymers prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization were subjected to aminolysis reaction using hexylamine. Chemically crosslinked gels or highly end-functionalized star polymers can be obtained depending mainly on the type of solvent used during the transformation of the RAFT functional group. An increase in the viscosity of the solution was observed when the aminolysis was carried out in THF. In contrast, when the reaction was conducted in dichloromethane, chain-end thiol (PNVCL)6 star polymers could be obtained. Moreover, when purified (PNVCL-SH)6 star polymers are in contact with THF, the gelation occurs in just a few minutes, with an obvious increase in viscosity, to form physical gels that become chemically crosslinked gels after 12 h. Interestingly, when purified (PNVCL-SH)6 star polymers were stirred in distilled water, even at high aqueous solution concentration (40 mg/mL), there was no increase in the viscosity or gelation, and no evident gels were observed. The analysis of the hydrodynamic diameter (Dh) by dynamic light scattering (DLS) did not detect quantifiable change even after 4 days of stirring in water. On the other hand, the thiol groups in the (PNVCL-SH)6 star polymers were easily transformed into trithiocarbonate groups by addition of CS2 followed by benzyl bromide as demonstrated by UV-Vis spectroscopical analysis and GPC. After the modification, the (PNVCL)6 star polymers exhibit an intense yellow color typical of the absorption band of trithiocarbonate group at 308 nm. To further demonstrate the highly effective new trithiocarbonate end-functionality, the PNVCL polymers were successfully chain extended with N-isopropylacrylamide (NIPAM) to form six-arm star-shaped PNIPAM-b-PNVCL block copolymers. Moreover, the terminal thiol end-functionality in the (PNVCL-SH)6 star polymers was linked via disulfide bond formation to l-cysteine to further demonstrate its reactivity. Zeta potential analysis shows the pH-responsive behavior of these star polymers due to l-cysteine end-functionalization. By this using methodology and properly selecting the solvent, various environment-sensitive star polymers with different end-groups could be easily accessible.

12.
J Biomater Sci Polym Ed ; 32(9): 1107-1124, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33691605

RESUMO

Nanoparticles (NP) of 12.7 nm in diameter of the poly(methyl methacrylate (MMA)-co-methacrylic acid (MAA)) copolymer were prepared. 13C-NMR results showed a MMA:MAA molar ratio of 0.64:0.36 in the copolymer, which is similar to the poly(MMA-co-MAA) commercially known as the FDA approved Eudragit S100 (0.67:0.33). The NP prepared in this study were loaded at pH 5 with varying amounts (from 0.54 to 6.91%) of doxorubicin (DOX), an antineoplastic drug. 1H-NMR results indicated the electrostatic interactions between the ionized carboxylic groups of the MAA units in the copolymer and the proton of the glycosidic amine in DOX. Measurements by QLS and TEM indicated that the loading destabilizes the NP, and that for increase stability, they aggregate in a reversible way, forming aggregates with a diameter up to 99.5 nm at a DOX load of 6.91%. The analysis of drug release data at pH 7.4 showed that loaded NP with at least 4.38% DOX release the drug very slowly and follows the Higuchi model; the former suggests that they could remain for long periods in the bloodstream to reach and destroy cancer cells.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Doxorrubicina , Portadores de Fármacos , Concentração de Íons de Hidrogênio , Metacrilatos , Polimetil Metacrilato
13.
Polymers (Basel) ; 12(9)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967249

RESUMO

Different synthetic strategies were tested for the incorporation of galactose molecules on thermoresponsive nanogels owing to their affinity for receptors expressed in cancer cells. Three families of galactose-functionalized poly(N-vinylcaprolactam) nanogels were prepared with the aim to control the introduction of galactose-moieties into the core, the core-shell interface and the shell. First and second of the above mentioned, were prepared via surfactant free emulsion polymerization (SFEP) by a free-radical mechanism and the third one, via SFEP/reversible addition-fragmentation chain transfer (RAFT) polymerization. Synthetic recipes for the SFEP/free radical method included besides N-vinylcaprolactam (NVCL), a shell forming poly(ethylene glycol) methyl ether methacrylate (PEGMA), while the galactose (GAL) moiety was introduced via 6-O-acryloyl-1,2,:3,4-bis-O-(1-methyl-ethylidene)-α-D-galactopiranose (6-ABG, protected GAL-monomer): nanogels I, or 2-lactobionamidoethyl methacrylate (LAMA, GAL-monomer): nanogels II. For the SFEP/RAFT methodology poly(2-lactobionamidoethyl methacrylate) as GAL macro-chain transfer agent (PLAMA macro-CTA) was first prepared and on a following stage, the macro-CTA was copolymerized with PEGMA and NVCL, nanogels III. The crosslinker ethylene glycol dimethacrylate (EGDMA) was added in both methodologies for the polymer network construction. Nanogel's sizes obtained resulted between 90 and 370 nm. With higher content of PLAMA macro-CTA or GAL monomer in nanogels, a higher the phase-transition temperature (TVPT) was observed with values ranging from 28 to 46 °C. The ρ-parameter, calculated by the ratio of gyration and hydrodynamic radii from static (SLS) and dynamic (DLS) light scattering measurements, and transmission electron microscopy (TEM) micrographs suggest that core-shell nanogels of flexible chains were obtained; in either spherical (nanogels II and III) or hyperbranched (nanogels I) form.

14.
ACS Omega ; 5(16): 9171-9184, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32363269

RESUMO

Curcumin (CUR) has gained much attention for its widely reported anticancer effect; however, its clinical use is restricted due to its low water solubility and, consequently, its poor bioavailability. Here, we report on the use of a nanoformulation of CUR with cationic nanogels for colon cancer therapy. Cationic stimuli-sensitive nanogels were prepared using a scale-up polymerization methodology based on surfactant-free emulsion polymerization of N,N'-diethylaminoethyl methacrylate (DEAEM) and poly(ethyleneglycol) methacrylate (PEGMA). The obtained nanogels showed a homogeneous size distribution (from 51 to 162 nm, polydispersity index (PDI) < 0.138) and exhibited a spherical form and core-shell morphology as confirmed by dynamic light scattering and electron microscopy, respectively. Nanogels were responsive to and degradable by variations of pH, temperature, or the redox environment, depending on the cross-linker used in the synthesis. Nanogels cross-linked with bis(acryloyl)cystamine incubated in a buffer (pH 7.4) containing 3 mM glutathione degraded in 60 min, while nanogels cross-linked with a divinylacetal cross-linker degraded in 10 min (pH ≤ 6). Nanoformulations of nanogels with CUR were stable as tested up to 30 days at physiological conditions. In vitro studies of the human colon cancer cell line (HCT-116) showed a synergistic effect of CUR and the degradable nanogels. Further, in vivo acute cytotoxicity tests of empty nanogels in mice demonstrate their potential as CUR nanocarriers for colon-anticancer therapies.

15.
Polymers (Basel) ; 11(10)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614638

RESUMO

Thermo-responsive polymers and copolymers derivatives of oligo(ethylene glycol) methyl ether methacrylate (Mn = 300 g mol-1) (OEGMA) and di(ethylene glycol) methyl ether methacrylate (DEGMA) have been synthesized by reversible addition fragmentation chain transfer polymerization (RAFT) using 5-amino-4-methyl-4-(propylthiocarbonothioylthio)-5-oxopentanoic acid (APP) as chain transfer agent (CTA). The monomer conversion was evaluated by hydrogen nuclear magnetic resonance (1H-NMR); number average molecular weights (Mn), weight average molecular weight (Mw), and dispersity (D) were obtained by gel permeation chromatography (GPC); glass transition temperature (Tg) was evaluated by modulated differential scanning calorimetry (DSC), cloud point temperature (Tcp) was measured and compared by turbidimetry and dynamic light scattering (DLS). The effect of polymer composition and concentration on the Tcp, either in water or in phosphate buffer saline (PBS), was studied. The values of Tcp using PBS were between 3 and 4 °C lower than using water. Results showed an ideal copolymerization behavior; therefore, the Tcp could be tuned by an adequate monomers feed ratio obtaining polymers which may be used in drug delivery and other applications.

16.
Colloids Surf B Biointerfaces ; 182: 110365, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31344612

RESUMO

Stimuli-responsive polymeric nanogels have been proposed as nanocarriers of cisplatin to maximize its effect for cancer treatment. In this work, a comparative study between anionic core nanogels (ACN) and cationic core nanogels (CCN), both with PEGylated shells, has been performed. The nanogels were synthesized with different cross-linked cores: CCN with poly(N,N-diethylaminoethyl methacrylate) (PDEAEMA) and ACN with poly(2-methacryloyloxi benzoic acid) (P2MBA). Cisplatin chelate formation with carboxylic acids (ACN) or metal coordination with the amine groups (CCN) leads to a high loading of cisplatin into the nanocarriers. The nanocarriers ability to contain and modulate the supply of cisplatin was tested according to the pH of the medium, in which ACN efficiently released the drug at a typical pH value of a tumor tissue (pH = 6.8) while CCN only releases the drug at more acidic, endosome like, conditions (pH = 5). The effect of drug-free nanogels on cell lines NCI-H1437 (non-small cell lung carcinoma) was evaluated, showing biocompatibility at all concentrations studied (30-400 µg/mL) for both ACN and CCN. However, the survival percentage of the cells in contact with cisplatin-loaded nanogels were dependent on the dose, the time of contact and the type of nanogel. Cisplatin loaded CCN induced lower cell viability after 48 h of contact. Fluorescence microscopy showed a viable internalization of the CCN nanogels, this was confirmed by flow cytometry in which 37.8% of cells contained drug loaded CCNs after 30 min of contact, representing a more effective nanocarrier for cisplatin to this cell-line.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Portadores de Fármacos , Nanogéis/química , Nanopartículas/química , Ânions , Antineoplásicos/química , Ácidos Carboxílicos/química , Cátions , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/química , Reagentes de Ligações Cruzadas/química , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Cinética , Metacrilatos/química , Polietilenoglicóis/química , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/patologia
17.
Polymers (Basel) ; 11(6)2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31151188

RESUMO

In the present study, poly(ethylene glycol)-b-poly(N,N-diethylaminoethyl methacrylate) (PEG-b-PDEAEM) amphiphilic block copolymers were synthetized by reversible addition-fragmentation chain transfer (RAFT) polymerization using two different macro chain transfer agents containing PEG of 2000 and 5000 g/mol and varying the length of the PDEAEM segment. From the obtained block copolymers, polymersome type nanometric aggregates were obtained by two different techniques. By direct dispersion, particle diameters around 200 nm were obtained, while by solvent exchange using THF and water, the obtained diameters were around 100 nm. These block copolymers were used to encapsulate gold nanorods and doxorubicin (DOX) with good efficiencies to obtain nanomaterials with potential use as dual stimuli-sensitive drug delivery systems for combined anticancer therapies. Drug delivery studies showed that the release rate of DOX was accelerated when the pH was lowered from 7.4 to 5.8 and also when the systems were irradiated with a NIR laser at pH 7.4. The combination of lower pH and near infrared (NIR) irradiation resulted in higher drug release only in the case of polymersomes with lower molecular weight PEG.

18.
Materials (Basel) ; 12(9)2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067636

RESUMO

This work shows an optimized enzymatic hydrolysis of high molecular weight potato galactan yielding pectic galactan-oligosaccharides (PGOs), where endo-ß-1,4-galactanase (galactanase) from Cellvibrio japonicus and Clostridium thermocellum was used. For this, response surface methodology (RSM) by central composite design (CCD) was applied. The parameters varied were temperature (°C), pH, incubation time (min), and enzyme/substrate ratio (U/mg). The optimized conditions for the production of low degree of polymerization (DP) PGOs were obtained for each enzyme by spectrophotometric assay and confirmed by chromatography. The optimal conditions predicted for the use of C. japonicus galactanase to obtain PGOs of DP = 2 were T = 51.8 °C, pH 5, E/S = 0.508 U/mg, and t = 77.5 min. For DP = 3, they were T = 21 °C, pH 9, E/S = 0.484 U/mg, and t = 12.5 min; and for DP = 4, they were T = 21 °C, pH 5, E/S = 0.462 U/mg, and t = 12.5 min. The efficiency results were 51.3% for substrate hydrolysis. C. thermocellum galactanase had a lower yield (35.7%) and optimized conditions predicted for PGOs of DP = 2 were T = 60 °C, pH 5, E/S = 0.525 U/mg, and time = 148 min; DP = 3 were T = 59.7 °C, pH 5, E/S = 0.506 U/mg, and time = 12.5 min; and DP = 4, were T = 34.5 °C, pH 11, E/S = 0.525 U/mg, and time = 222.5 min. Fourier transformed infrared (FT-IR) and nuclear magnetic resonance (NMR) characterizations of PGOs are presented.

19.
Materials (Basel) ; 12(20)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658585

RESUMO

A Gamma irradiation and photochemical crosslinking/grafting of poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(2-hydroxyethyl methacrylate-co-poly(ethylene glycol) methacrylate) (poly(HEMA-co-PEGMA)) hydrogels onto polyethyleneterephtalate fabric (PET) surfaces were evaluated, in order to obtain a hydrophilic homogeneous coating onto PET fabrics. The materials were characterized by FTIR-ATR, SEM, EDS, and thermal analysis. Furthermore, silver nanoparticles (AgNPs) were loaded by in situ reduction of AgNO3, and its antibacterial activity against Staphylococcus aureus and Escherichia coli was determined. Results showed a ticker coating of hydrogel using gamma radiation and stronger in deep modification of the fibers; however, by the photochemical method, a thin coating with good coverage of PET surface was obtained. The differences in hydrophilicity, thermal properties, and antibacterial activity of the coated fabrics by using both methods were rather small.

20.
Polymers (Basel) ; 10(1)2017 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30966057

RESUMO

A mini-library of star-shaped thermoresponsive polymers having six arms was prepared using a hexafunctional xanthate by reversible addition⁻fragmentation chain transfer (RAFT) polymerization. Star polymers with homopolymeric arms of poly(N-vinylcaprolactam) (PNVCL), copolymeric arms of poly(N-vinylcaprolactam-co-N-vinylpyrrolidone) (PNVCL-co-PNVP) and also arms of block copolymers of PNVCL-b-PVAc, (PNVCL-co-PNVP)-b-PVAc, and combinations of them changing the order of the block was achieved exploiting the R-RAFT synthetic methodology (or R-group approach), wherein the thiocarbonyl group is transferred to the polymeric chain end. Taking advantage of the RAFT benefits, the molecular weight of the star polymers was controlled (Mn = 11,880⁻153,400 g/mol) to yield star polymers of different sizes and lower critical solution temperature (LCST) values. Removing the xanthate group of the star polymers allowed for the introduction of specific functional groups at the ends of the star arms and resulted in an increase of the LCST values. Star PNVCL-b-PVAc diblock copolymers with PVAc contents of 5⁻26 mol % were prepared; the hydrophobic segment (PVAc) is located at the end of the star arms. Interestingly, when the PVAc content was 5⁻7 mol %, the hydrodynamic diameter (Dh) value of the aggregates formed in water was almost the same sa the Dh of the corresponding PNVCL star homopolymers. It is proposed that these star block copolymers self-assemble into single flowerlike micelles, showing great stability in aqueous solution. Star block copolymers with the PVAc hydrophobic block in the core of the star, such as PVAc-b-(PNVCL-co-PNVP), form micellar aggregates in aqueous solution with Dh values in the range from ~115 to 245 nm while maintaining a thermoresponsive behavior. Micellar aggregates of selected star polymers were used to encapsulate methotrexate (MTX) showing their potential in the temperature controlled release of this antineoplasic drug. The importance of the order in which each block constituent is introduced in the arms of the star polymers for their solution/aggregation behavior is demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA