Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951027

RESUMO

Knowledge of locations and activities of cis-regulatory elements (CREs) is needed to decipher basic mechanisms of gene regulation and to understand the impact of genetic variants on complex traits. Previous studies identified candidate CREs (cCREs) using epigenetic features in one species, making comparisons difficult between species. In contrast, we conducted an interspecies study defining epigenetic states and identifying cCREs in blood cell types to generate regulatory maps that are comparable between species, using integrative modeling of eight epigenetic features jointly in human and mouse in our Validated Systematic Integration (VISION) Project. The resulting catalogs of cCREs are useful resources for further studies of gene regulation in blood cells, indicated by high overlap with known functional elements and strong enrichment for human genetic variants associated with blood cell phenotypes. The contribution of each epigenetic state in cCREs to gene regulation, inferred from a multivariate regression, was used to estimate epigenetic state Regulatory Potential (esRP) scores for each cCRE in each cell type, which were used to categorize dynamic changes in cCREs. Groups of cCREs displaying similar patterns of regulatory activity in human and mouse cell types, obtained by joint clustering on esRP scores, harbored distinctive transcription factor binding motifs that were similar between species. An interspecies comparison of cCREs revealed both conserved and species-specific patterns of epigenetic evolution. Finally, we showed that comparisons of the epigenetic landscape between species can reveal elements with similar roles in regulation, even in the absence of genomic sequence alignment.

2.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35121660

RESUMO

Multidrug Resistance Proteins (MRPs) are transporters that play critical roles in cancer even though the physiological substrates of these enigmatic transporters are poorly elucidated. In Caenorhabditis elegans, MRP5/ABCC5 is an essential heme exporter because mrp-5 mutants are unviable due to their inability to export heme from the intestine to extraintestinal tissues. Heme supplementation restores viability of these mutants but fails to restore male reproductive deficits. Correspondingly, cell biological studies show that MRP5 regulates heme levels in the mammalian secretory pathway even though MRP5 knockout (KO) mice do not show reproductive phenotypes. The closest homolog of MRP5 is MRP9/ABCC12, which is absent in C. elegans, raising the possibility that MRP9 may genetically compensate for MRP5. Here, we show that MRP5 and MRP9 double KO (DKO) mice are viable but reveal significant male reproductive deficits. Although MRP9 is highly expressed in sperm, MRP9 KO mice show reproductive phenotypes only when MRP5 is absent. Both ABCC transporters localize to mitochondrial-associated membranes, dynamic scaffolds that associate the mitochondria and endoplasmic reticulum. Consequently, DKO mice reveal abnormal sperm mitochondria with reduced mitochondrial membrane potential and fertilization rates. Metabolomics show striking differences in metabolite profiles in the DKO testes, and RNA sequencing shows significant alterations in genes related to mitochondrial function and retinoic acid metabolism. Targeted functional metabolomics reveal lower retinoic acid levels in the DKO testes and higher levels of triglycerides in the mitochondria. These findings establish a model in which MRP5 and MRP9 play a concerted role in regulating male reproductive functions and mitochondrial sufficiency.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Mitocôndrias/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Reprodução/fisiologia , Subfamília B de Transportador de Cassetes de Ligação de ATP , Animais , Transporte Biológico/fisiologia , Caenorhabditis elegans/metabolismo , Heme/metabolismo , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Espermatozoides/metabolismo , Testículo/metabolismo
3.
Genome Res ; 30(3): 472-484, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32132109

RESUMO

Thousands of epigenomic data sets have been generated in the past decade, but it is difficult for researchers to effectively use all the data relevant to their projects. Systematic integrative analysis can help meet this need, and the VISION project was established for validated systematic integration of epigenomic data in hematopoiesis. Here, we systematically integrated extensive data recording epigenetic features and transcriptomes from many sources, including individual laboratories and consortia, to produce a comprehensive view of the regulatory landscape of differentiating hematopoietic cell types in mouse. By using IDEAS as our integrative and discriminative epigenome annotation system, we identified and assigned epigenetic states simultaneously along chromosomes and across cell types, precisely and comprehensively. Combining nuclease accessibility and epigenetic states produced a set of more than 200,000 candidate cis-regulatory elements (cCREs) that efficiently capture enhancers and promoters. The transitions in epigenetic states of these cCREs across cell types provided insights into mechanisms of regulation, including decreases in numbers of active cCREs during differentiation of most lineages, transitions from poised to active or inactive states, and shifts in nuclease accessibility of CTCF-bound elements. Regression modeling of epigenetic states at cCREs and gene expression produced a versatile resource to improve selection of cCREs potentially regulating target genes. These resources are available from our VISION website to aid research in genomics and hematopoiesis.


Assuntos
Epigênese Genética , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Animais , Camundongos , Elementos Reguladores de Transcrição , Transcriptoma
4.
Am J Med Genet A ; 191(10): 2647-2650, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37449546

RESUMO

Our ability to identify different variants in GBA1, the gene mutated in the lysosomal storage disorder Gaucher disease (GD), has greatly improved. We describe a multigenerational family with type 1 GD initially evaluated over three decades ago. Re-evaluating both the genotype and phenotype, we determined that one family member with genotype N370S/T369M (p.N409S/p.T408M), was likely erroneously diagnosed with GD. This case substantiates that GBA1 variant T369M, while mildly reducing glucocerebrosidase activity, does not result in GD. The observation has clinical relevance as cases with this genotype will increasingly be ascertained through screening programs in newborns and in movement disorder clinics.


Assuntos
Doença de Gaucher , Humanos , Recém-Nascido , Doença de Gaucher/diagnóstico , Doença de Gaucher/genética , Glucosilceramidase/genética , Genótipo , Fenótipo , Família , Mutação
5.
IUBMB Life ; 72(1): 27-38, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31769130

RESUMO

Members of the GATA family of transcription factors play key roles in the differentiation of specific cell lineages by regulating the expression of target genes. Three GATA factors play distinct roles in hematopoietic differentiation. In order to better understand how these GATA factors function to regulate genes throughout the genome, we are studying the epigenomic and transcriptional landscapes of hematopoietic cells in a model-driven, integrative fashion. We have formed the collaborative multi-lab VISION project to conduct ValIdated Systematic IntegratiON of epigenomic data in mouse and human hematopoiesis. The epigenomic data included nuclease accessibility in chromatin, CTCF occupancy, and histone H3 modifications for 20 cell types covering hematopoietic stem cells, multilineage progenitor cells, and mature cells across the blood cell lineages of mouse. The analysis used the Integrative and Discriminative Epigenome Annotation System (IDEAS), which learns all common combinations of features (epigenetic states) simultaneously in two dimensions-along chromosomes and across cell types. The result is a segmentation that effectively paints the regulatory landscape in readily interpretable views, revealing constitutively active or silent loci as well as the loci specifically induced or repressed in each stage and lineage. Nuclease accessible DNA segments in active chromatin states were designated candidate cis-regulatory elements in each cell type, providing one of the most comprehensive registries of candidate hematopoietic regulatory elements to date. Applications of VISION resources are illustrated for the regulation of genes encoding GATA1, GATA2, GATA3, and Ikaros. VISION resources are freely available from our website http://usevision.org.


Assuntos
Cromatina/metabolismo , Epigenoma , Fatores de Transcrição GATA/metabolismo , Regulação da Expressão Gênica , Hematopoese , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Animais , Diferenciação Celular , Cromatina/genética , Fatores de Transcrição GATA/genética , Humanos
6.
Blood ; 129(23): 3111-3120, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28377399

RESUMO

Diamond-Blackfan anemia (DBA) is a congenital bone marrow failure syndrome characterized by erythroid hypoplasia, usually without perturbation of other hematopoietic lineages. Approximately 65% of DBA patients with autosomal dominant inheritance have heterozygous mutations or deletions in ribosomal protein (RP) genes while <1% of patients with X-linked inheritance have been identified with mutations in the transcription factor GATA1 Erythroid cells from patients with DBA have not been well characterized, and the mechanisms underlying the erythroid specific effects of either RP or GATA1 associated DBA remain unclear. We have developed an ex vivo culture system to expand peripheral blood CD34+ progenitor cells from patients with DBA and differentiate them into erythroid cells. Cells from patients with RP or GATA1 mutations showed decreased proliferation and delayed erythroid differentiation in comparison with controls. RNA transcript analyses of erythroid cells from controls and patients with RP or GATA1 mutations showed distinctive differences, with upregulation of heme biosynthesis genes prominently in RP-mediated DBA and failure to upregulate components of the translational apparatus in GATA1-mediated DBA. Our data show that dysregulation of translation is a common feature of DBA caused by both RP and GATA1 mutations. This trial was registered at www.clinicaltrials.gov as #NCT00106015.


Assuntos
Anemia de Diamond-Blackfan/genética , Adolescente , Adulto , Anemia de Diamond-Blackfan/sangue , Anemia de Diamond-Blackfan/metabolismo , Estudos de Casos e Controles , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Criança , Pré-Escolar , Células Eritroides/metabolismo , Células Eritroides/patologia , Eritropoese/genética , Feminino , Fator de Transcrição GATA1/genética , Genes Dominantes , Genes Ligados ao Cromossomo X , Humanos , Masculino , Modelos Genéticos , Mutação , Proteínas Ribossômicas/genética , Transcriptoma , Adulto Jovem
7.
Bioinformatics ; 33(17): 2615-2621, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28449120

RESUMO

MOTIVATION: Epigenetic data are invaluable when determining the regulatory programs governing a cell. Based on use of next-generation sequencing data for characterizing epigenetic marks and transcription factor binding, numerous peak-calling approaches have been developed to determine sites of genomic significance in these data. Such analyses can produce a large number of false positive predictions, suggesting that sites supported by multiple algorithms provide a stronger foundation for inferring and characterizing regulatory programs associated with the epigenetic data. Few methodologies integrate epigenetic based predictions of multiple approaches when combining profiles generated by different tools. RESULTS: The SigSeeker peak-calling ensemble uses multiple tools to identify peaks, and with user-defined thresholds for peak overlap and signal strength it retains only those peaks that are concordant across multiple tools. Peaks predicted to be co-localized by only a very small number of tools, discovered to be only marginally overlapping, or found to represent significant outliers to the approximation model are removed from the results, providing concise and high quality epigenetic datasets. SigSeeker has been validated using established benchmarks for transcription factor binding and histone modification ChIP-Seq data. These comparisons indicate that the quality of our ensemble technique exceeds that of single tool approaches, enhances existing peak-calling ensembles, and results in epigenetic profiles of higher confidence. AVAILABILITY AND IMPLEMENTATION: http://sigseeker.org. CONTACT: lichtenbergj@mail.nih.gov. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Epigenômica/métodos , Software , Algoritmos , Linhagem Celular , Imunoprecipitação da Cromatina/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Análise de Sequência de DNA/métodos
8.
Nucleic Acids Res ; 44(D1): D925-31, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26590403

RESUMO

Extensive research into hematopoiesis (the development of blood cells) over several decades has generated large sets of expression and epigenetic profiles in multiple human and mouse blood cell types. However, there is no single location to analyze how gene regulatory processes lead to different mature blood cells. We have developed a new database framework called hematopoietic Systems Biology Repository (SBR-Blood), available online at http://sbrblood.nhgri.nih.gov, which allows user-initiated analyses for cell type correlations or gene-specific behavior during differentiation using publicly available datasets for array- and sequencing-based platforms from mouse hematopoietic cells. SBR-Blood organizes information by both cell identity and by hematopoietic lineage. The validity and usability of SBR-Blood has been established through the reproduction of workflows relevant to expression data, DNA methylation, histone modifications and transcription factor occupancy profiles.


Assuntos
Bases de Dados Genéticas , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Animais , Metilação de DNA , Epigênese Genética , Perfilação da Expressão Gênica , Humanos , Camundongos , Biologia de Sistemas
9.
BMC Plant Biol ; 16(1): 229, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27769192

RESUMO

BACKGROUND: Hydroxyproline-rich glycoproteins (HRGPs) constitute a plant cell wall protein superfamily that functions in diverse aspects of growth and development. This superfamily contains three members: the highly glycosylated arabinogalactan-proteins (AGPs), the moderately glycosylated extensins (EXTs), and the lightly glycosylated proline-rich proteins (PRPs). Chimeric and hybrid HRGPs, however, also exist. A bioinformatics approach is employed here to identify and classify AGPs, EXTs, PRPs, chimeric HRGPs, and hybrid HRGPs from the proteins predicted by the completed genome sequence of poplar (Populus trichocarpa). This bioinformatics approach is based on searching for biased amino acid compositions and for particular protein motifs associated with known HRGPs with a newly revised and improved BIO OHIO 2.0 program. Proteins detected by the program are subsequently analyzed to identify the following: 1) repeating amino acid sequences, 2) signal peptide sequences, 3) glycosylphosphatidylinositol lipid anchor addition sequences, and 4) similar HRGPs using the Basic Local Alignment Search Tool (BLAST). RESULTS: The program was used to identify and classify 271 HRGPs from poplar including 162 AGPs, 60 EXTs, and 49 PRPs, which are each divided into various classes. This is in contrast to a previous analysis of the Arabidopsis proteome which identified 162 HRGPs consisting of 85 AGPs, 59 EXTs, and 18 PRPs. Poplar was observed to have fewer classical EXTs, to have more fasciclin-like AGPs, plastocyanin AGPs and AG peptides, and to contain a novel class of PRPs referred to as the proline-rich peptides. CONCLUSIONS: The newly revised and improved BIO OHIO 2.0 bioinformatics program was used to identify and classify the inventory of HRGPs in poplar in order to facilitate and guide basic and applied research on plant cell walls. The newly identified poplar HRGPs can now be examined to determine their respective structural and functional roles, including their possible applications in the areas plant biofuel and natural products for medicinal or industrial uses. Additionally, other plants whose genomes are sequenced can now be examined in a similar way using this bioinformatics program which will provide insight to the evolution of the HRGP family in the plant kingdom.


Assuntos
Glicoproteínas/genética , Proteínas de Plantas/genética , Populus/genética , Sequência de Aminoácidos , Biologia Computacional , Glicoproteínas/análise , Glicoproteínas/química , Glicoproteínas/metabolismo , Hidroxiprolina/metabolismo , Proteínas de Plantas/análise , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Populus/metabolismo
10.
Genome Res ; 22(8): 1407-18, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22684279

RESUMO

DNA methylation is an essential epigenetic mark that is required for normal development. Knockout of the DNA methyltransferase enzymes in the mouse hematopoietic compartment reveals that methylation is critical for hematopoietic differentiation. To better understand the role of DNA methylation in hematopoiesis, we characterized genome-wide DNA methylation in primary mouse hematopoietic stem cells (HSCs), common myeloid progenitors (CMPs), and erythroblasts (ERYs). Methyl binding domain protein 2 (MBD) enrichment of DNA followed by massively parallel sequencing (MBD-seq) was used to map genome-wide DNA methylation. Globally, DNA methylation was most abundant in HSCs, with a 40% reduction in CMPs, and a 67% reduction in ERYs. Only 3% of peaks arise during differentiation, demonstrating a genome-wide decline in DNA methylation during erythroid development. Analysis of genomic features revealed that 98% of promoter CpG islands are hypomethylated, while 20%-25% of non-promoter CpG islands are methylated. Proximal promoter sequences of expressed genes are hypomethylated in all cell types, while gene body methylation positively correlates with gene expression in HSCs and CMPs. Elevated genome-wide DNA methylation in HSCs and the positive association between methylation and gene expression demonstrates that DNA methylation is a mark of cellular plasticity in HSCs. Using de novo motif discovery, we identified overrepresented transcription factor consensus binding motifs in methylated sequences. Motifs for several ETS transcription factors, including GABPA and ELF1, are overrepresented in methylated regions. Our genome-wide survey demonstrates that DNA methylation is markedly altered during myeloid differentiation and identifies critical regions of the genome and transcription factor programs that contribute to hematopoiesis.


Assuntos
Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Diferenciação Celular , Imunoprecipitação da Cromatina , Mapeamento Cromossômico/métodos , Ilhas de CpG , Proteínas de Ligação a DNA/genética , Eritroblastos/citologia , Eritroblastos/metabolismo , Fator de Transcrição de Proteínas de Ligação GA/genética , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/citologia , Camundongos , Células Mieloides/citologia , Células Mieloides/metabolismo , Proteínas Nucleares/genética , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/genética , Transcriptoma
11.
bioRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37066352

RESUMO

Knowledge of locations and activities of cis -regulatory elements (CREs) is needed to decipher basic mechanisms of gene regulation and to understand the impact of genetic variants on complex traits. Previous studies identified candidate CREs (cCREs) using epigenetic features in one species, making comparisons difficult between species. In contrast, we conducted an interspecies study defining epigenetic states and identifying cCREs in blood cell types to generate regulatory maps that are comparable between species, using integrative modeling of eight epigenetic features jointly in human and mouse in our V al i dated S ystematic I ntegrati on (VISION) Project. The resulting catalogs of cCREs are useful resources for further studies of gene regulation in blood cells, indicated by high overlap with known functional elements and strong enrichment for human genetic variants associated with blood cell phenotypes. The contribution of each epigenetic state in cCREs to gene regulation, inferred from a multivariate regression, was used to estimate epigenetic state Regulatory Potential (esRP) scores for each cCRE in each cell type, which were used to categorize dynamic changes in cCREs. Groups of cCREs displaying similar patterns of regulatory activity in human and mouse cell types, obtained by joint clustering on esRP scores, harbored distinctive transcription factor binding motifs that were similar between species. An interspecies comparison of cCREs revealed both conserved and species-specific patterns of epigenetic evolution. Finally, we showed that comparisons of the epigenetic landscape between species can reveal elements with similar roles in regulation, even in the absence of genomic sequence alignment.

12.
Nucleic Acids Res ; 39(6): 2175-87, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21071415

RESUMO

Eukaryotic core promoters are often characterized by the presence of consensus motifs such as the TATA box or initiator elements, which attract and direct the transcriptional machinery to the transcription start site. However, many human promoters have none of the known core promoter motifs, suggesting that undiscovered promoter motifs exist in the genome. We previously identified a mutation in the human Ankyrin-1 (ANK-1) promoter that causes the disease ankyrin-deficient Hereditary Spherocytosis (HS). Although the ANK-1 promoter is CpG rich, no discernable basal promoter elements had been identified. We showed that the HS mutation disrupted the binding of the transcription factor TFIID, the major component of the pre-initiation complex. We hypothesized that the mutation identified a candidate promoter element with a more widespread role in gene regulation. We examined 17,181 human promoters for the experimentally validated binding site, called the TFIID localization sequence (DLS) and found three times as many promoters containing DLS than TATA motifs. Mutational analyses of DLS sequences confirmed their functional significance, as did the addition of a DLS site to a minimal Sp1 promoter. Our results demonstrate that novel promoter elements can be identified on a genome-wide scale through observations of regulatory disruptions that cause human disease.


Assuntos
Anquirinas/genética , Mutação , Regiões Promotoras Genéticas , Esferocitose Hereditária/genética , Fator de Transcrição TFIID/metabolismo , Sequência de Bases , Sítios de Ligação , Sequência Consenso , Genoma Humano , Humanos , Células K562 , Sítio de Iniciação de Transcrição
13.
medRxiv ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37986861

RESUMO

Biallelic mutations in GBA1 result in Gaucher disease (GD), the inherited deficiency of glucocerebrosidase. Variants in GBA1 are also a common genetic risk factor for Parkinson disease (PD). Currently, some PD centers screen for mutant GBA1 alleles to stratify patients who may ultimately benefit from GBA1-targeted therapeutics. However, accurately detecting variants, especially recombinant alleles resulting from a crossover between GBA1 and its pseudogene, is challenging, impacting studies of both GD and GBA1-associated parkinsonism. Recently, the software tool Gauchian was introduced to identify GBA1 variants from whole genome sequencing. We evaluated Gauchian in 90 Sanger-sequenced patients with GD and five GBA1 heterozygotes. While Gauchian genotyped most patients correctly, it missed some rare or de novo mutations due to its limited internal database and over-reliance on intergenic structural variants. This resulted in misreported homozygosity, incomplete genotypes, and undetected recombination events, limiting Gauchian's utility in variant screening and precluding its use in diagnostics.

14.
J Mov Disord ; 16(3): 321-324, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37309111

RESUMO

Biallelic mutations in GBA1 cause the lysosomal storage disorder Gaucher disease, and carriers of GBA1 variants have an increased risk of Parkinson's disease (PD). It is still unknown whether GBA1 variants are also associated with other movement disorders. We present the case of a woman with type 1 Gaucher disease who developed acute dystonia and parkinsonism at 35 years of age during a recombinant enzyme infusion treatment. She developed severe dystonia in all extremities and a bilateral pill-rolling tremor that did not respond to levodopa treatment. Despite the abrupt onset of symptoms, neither Sanger nor whole genome sequencing revealed pathogenic variants in ATP1A3 associated with rapid-onset dystonia-parkinsonism (RDP). Further examination showed hyposmia and presynaptic dopaminergic deficits in [18F]-DOPA PET, which are commonly seen in PD but not in RDP. This case extends the spectrum of movement disorders reported in patients with GBA1 mutations, suggesting an intertwined phenotype.

15.
Front Neurol ; 13: 1039214, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330429

RESUMO

Objective: Biallelic mutations in GBA1, which encodes the lysosomal enzyme glucocerebrosidase, cause the lysosomal storage disorder Gaucher disease (GD). In addition, mutations in GBA1 are the most common genetic risk factor for future development of Parkinson's disease (PD). However, most mutation carriers will never develop parkinsonism. Olfactory dysfunction is often a prodromal symptom in patients with PD, appearing many years prior to motor dysfunction. The purpose of this study was to assess olfactory function longitudinally in individuals with and without parkinsonism who carry at least one GBA1 mutation. Methods: One hundred seventeen individuals who participated in a natural history study of GD at the National Institutes of Health were evaluated using the University of Pennsylvania Smell Identification Test (UPSIT) during a 16-year period. Seventy patients with GD (13 with PD) and 47 GBA1 carriers (9 with PD) were included. Fifty-six of the total (47.9%) were seen over multiple visits, and had UPSIT screening performed two to six times, with time intervals between testing ranging from 2 to 6 years. Comparative and control data were obtained from the Parkinson's Progression Markers Initiative (PPMI) database (519 individuals, including 340 with idiopathic PD and 179 healthy controls). Statistical analysis was performed using R. Results: Severe hyposmia and anosmia was evident in both GBA1 heterozygotes and homozygotes with PD. 84% without parkinsonism had UPSIT scores >30, and those who underwent repeated testing maintained olfactory function over time. No statistically significant difference in UPSIT scores was found between mutation carriers with and without a family history of parkinsonism. A small group of individuals without PD scored in the moderate-severe microsmia range. No significant differences in olfaction were found among our GBA1-PD cohort and idiopathic PD cohort obtained from PPMI.

16.
Plant Physiol ; 153(2): 485-513, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20395450

RESUMO

Hydroxyproline-rich glycoproteins (HRGPs) are a superfamily of plant cell wall proteins that function in diverse aspects of plant growth and development. This superfamily consists of three members: hyperglycosylated arabinogalactan proteins (AGPs), moderately glycosylated extensins (EXTs), and lightly glycosylated proline-rich proteins (PRPs). Hybrid and chimeric versions of HRGP molecules also exist. In order to "mine" genomic databases for HRGPs and to facilitate and guide research in the field, the BIO OHIO software program was developed that identifies and classifies AGPs, EXTs, PRPs, hybrid HRGPs, and chimeric HRGPs from proteins predicted from DNA sequence data. This bioinformatics program is based on searching for biased amino acid compositions and for particular protein motifs associated with known HRGPs. HRGPs identified by the program are subsequently analyzed to elucidate the following: (1) repeating amino acid sequences, (2) signal peptide and glycosylphosphatidylinositol lipid anchor addition sequences, (3) similar HRGPs via Basic Local Alignment Search Tool, (4) expression patterns of their genes, (5) other HRGPs, glycosyl transferase, prolyl 4-hydroxylase, and peroxidase genes coexpressed with their genes, and (6) gene structure and whether genetic mutants exist in their genes. The program was used to identify and classify 166 HRGPs from Arabidopsis (Arabidopsis thaliana) as follows: 85 AGPs (including classical AGPs, lysine-rich AGPs, arabinogalactan peptides, fasciclin-like AGPs, plastocyanin AGPs, and other chimeric AGPs), 59 EXTs (including SP(5) EXTs, SP(5)/SP(4) EXTs, SP(4) EXTs, SP(4)/SP(3) EXTs, a SP(3) EXT, "short" EXTs, leucine-rich repeat-EXTs, proline-rich extensin-like receptor kinases, and other chimeric EXTs), 18 PRPs (including PRPs and chimeric PRPs), and AGP/EXT hybrid HRGPs.


Assuntos
Biologia Computacional/métodos , Glicoproteínas/química , Glicoproteínas/classificação , Proteínas de Plantas/química , Proteínas de Plantas/classificação , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/metabolismo , Mineração de Dados , Bases de Dados de Proteínas , Genes de Plantas , Dados de Sequência Molecular , Análise de Sequência de Proteína , Software
17.
BMC Bioinformatics ; 11 Suppl 12: S6, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21210985

RESUMO

BACKGROUND: An important focus of genomic science is the discovery and characterization of all functional elements within genomes. In silico methods are used in genome studies to discover putative regulatory genomic elements (called words or motifs). Although a number of methods have been developed for motif discovery, most of them lack the scalability needed to analyze large genomic data sets. METHODS: This manuscript presents WordSeeker, an enumerative motif discovery toolkit that utilizes multi-core and distributed computational platforms to enable scalable analysis of genomic data. A controller task coordinates activities of worker nodes, each of which (1) enumerates a subset of the DNA word space and (2) scores words with a distributed Markov chain model. RESULTS: A comprehensive suite of performance tests was conducted to demonstrate the performance, speedup and efficiency of WordSeeker. The scalability of the toolkit enabled the analysis of the entire genome of Arabidopsis thaliana; the results of the analysis were integrated into The Arabidopsis Gene Regulatory Information Server (AGRIS). A public version of WordSeeker was deployed on the Glenn cluster at the Ohio Supercomputer Center. CONCLUSION: WordSeeker effectively utilizes concurrent computing platforms to enable the identification of putative functional elements in genomic data sets. This capability facilitates the analysis of the large quantity of sequenced genomic data.


Assuntos
DNA/química , Genômica/métodos , Sequências Reguladoras de Ácido Nucleico , Software , Algoritmos , Arabidopsis/genética , Genoma de Planta , Cadeias de Markov , Análise de Sequência de DNA
18.
BMC Genomics ; 10 Suppl 1: S18, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19594877

RESUMO

BACKGROUND: DNA repair genes provide an important contribution towards the surveillance and repair of DNA damage. These genes produce a large network of interacting proteins whose mRNA expression is likely to be regulated by similar regulatory factors. Full characterization of promoters of DNA repair genes and the similarities among them will more fully elucidate the regulatory networks that activate or inhibit their expression. To address this goal, the authors introduce a technique to find regulatory genomic signatures, which represents a specific application of the genomic signature methodology to classify DNA sequences as putative functional elements within a single organism. RESULTS: The effectiveness of the regulatory genomic signatures is demonstrated via analysis of promoter sequences for genes in DNA repair pathways of humans. The promoters are divided into two classes, the bidirectional promoters and the unidirectional promoters, and distinct genomic signatures are calculated for each class. The genomic signatures include statistically overrepresented words, word clusters, and co-occurring words. The robustness of this method is confirmed by the ability to identify sequences that exist as motifs in TRANSFAC and JASPAR databases, and in overlap with verified binding sites in this set of promoter regions. CONCLUSION: The word-based signatures are shown to be effective by finding occurrences of known regulatory sites. Moreover, the signatures of the bidirectional and unidirectional promoters of human DNA repair pathways are clearly distinct, exhibiting virtually no overlap. In addition to providing an effective characterization method for related DNA sequences, the signatures elucidate putative regulatory aspects of DNA repair pathways, which are notably under-characterized.


Assuntos
Biologia Computacional/métodos , Reparo do DNA , Regiões Promotoras Genéticas , Composição de Bases , Análise por Conglomerados , Bases de Dados Genéticas , Humanos , Modelos Estatísticos
19.
BMC Genomics ; 10: 463, 2009 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-19814816

RESUMO

BACKGROUND: Genome sequences can be conceptualized as arrangements of motifs or words. The frequencies and positional distributions of these words within particular non-coding genomic segments provide important insights into how the words function in processes such as mRNA stability and regulation of gene expression. RESULTS: Using an enumerative word discovery approach, we investigated the frequencies and positional distributions of all 65,536 different 8-letter words in the genome of Arabidopsis thaliana. Focusing on promoter regions, introns, and 3' and 5' untranslated regions (3'UTRs and 5'UTRs), we compared word frequencies in these segments to genome-wide frequencies. The statistically interesting words in each segment were clustered with similar words to generate motif logos. We investigated whether words were clustered at particular locations or were distributed randomly within each genomic segment, and we classified the words using gene expression information from public repositories. Finally, we investigated whether particular sets of words appeared together more frequently than others. CONCLUSION: Our studies provide a detailed view of the word composition of several segments of the non-coding portion of the Arabidopsis genome. Each segment contains a unique word-based signature. The respective signatures consist of the sets of enriched words, 'unwords', and word pairs within a segment, as well as the preferential locations and functional classifications for the signature words. Additionally, the positional distributions of enriched words within the segments highlight possible functional elements, and the co-associations of words in promoter regions likely represent the formation of higher order regulatory modules. This work is an important step toward fully cataloguing the functional elements of the Arabidopsis genome.


Assuntos
Arabidopsis/genética , Biologia Computacional/métodos , Genoma de Planta , Modelos Estatísticos , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Íntrons , Cadeias de Markov , Regiões Promotoras Genéticas , Análise de Sequência de DNA
20.
Epigenetics Chromatin ; 11(1): 22, 2018 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-29807547

RESUMO

BACKGROUND: Enhancers and promoters are cis-acting regulatory elements associated with lineage-specific gene expression. Previous studies showed that different categories of active regulatory elements are in regions of open chromatin, and each category is associated with a specific subset of post-translationally marked histones. These regulatory elements are systematically activated and repressed to promote commitment of hematopoietic stem cells along separate differentiation paths, including the closely related erythrocyte (ERY) and megakaryocyte (MK) lineages. However, the order in which these decisions are made remains unclear. RESULTS: To characterize the order of cell fate decisions during hematopoiesis, we collected primary cells from mouse bone marrow and isolated 10 hematopoietic populations to generate transcriptomes and genome-wide maps of chromatin accessibility and histone H3 acetylated at lysine 27 binding (H3K27ac). Principle component analysis of transcriptional and open chromatin profiles demonstrated that cells of the megakaryocyte lineage group closely with multipotent progenitor populations, whereas erythroid cells form a separate group distinct from other populations. Using H3K27ac and open chromatin profiles, we showed that 89% of immature MK (iMK)-specific active regulatory regions are present in the most primitive hematopoietic cells, 46% of which contain active enhancer marks. These candidate active enhancers are enriched for transcription factor binding site motifs for megakaryopoiesis-essential proteins, including ERG and ETS1. In comparison, only 64% of ERY-specific active regulatory regions are present in the most primitive hematopoietic cells, 20% of which containing active enhancer marks. These regions were not enriched for any transcription factor consensus sequences. Incorporation of genome-wide DNA methylation identified significant levels of de novo methylation in iMK, but not ERY. CONCLUSIONS: Our results demonstrate that megakaryopoietic profiles are established early in hematopoiesis and are present in the majority of the hematopoietic progenitor population. However, megakaryopoiesis does not constitute a "default" differentiation pathway, as extensive de novo DNA methylation accompanies megakaryopoietic commitment. In contrast, erythropoietic profiles are not established until a later stage of hematopoiesis, and require more dramatic changes to the transcriptional and epigenetic programs. These data provide important insights into lineage commitment and can contribute to ongoing studies related to diseases associated with differentiation defects.


Assuntos
Eritropoese , Redes Reguladoras de Genes , Células-Tronco Hematopoéticas/citologia , Megacariócitos/citologia , Sequências Reguladoras de Ácido Nucleico , Análise de Sequência de RNA/métodos , Animais , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Metilação de DNA , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Masculino , Camundongos , Especificidade de Órgãos , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA