Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 105(7): 076402, 2010 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-20868063

RESUMO

Muon spin rotation spectroscopy reveals localized electron states in the geometrically frustrated metallic pyrochlore Cd2Re2O7 at temperatures from 2 to 300 K in transverse magnetic fields up to 7 T. Two distinctive types of localized states, with characteristic radii of about 0.5 and 0.15 nm, are detected at high and low temperature, respectively. These states may be spin polarons, formed due to strong exchange interaction between itinerant electrons and the magnetic 5d electrons of Re ions, which may determine the peculiar electronic and magnetic properties of Cd2Re2O7.

2.
J Phys Condens Matter ; 24(18): 185601, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22481069

RESUMO

We report muon spin rotation spectra in the narrow-gap semiconductors FeGa(3) and FeSb(2) consistent with a narrow band of small spin polarons (SPs). The characteristic sizes obtained for these SPs are R(FeGa(3)) ≈ 0.3-0.6 nm and R(FeSb (2)) ≈ 0.3 nm, respectively. Such SP states are expected to originate from the exchange correlations between localized and itinerant electrons. Our data suggest that SP bands are formed at low temperature, but are destroyed by thermal fluctuations above 10 K in FeGa(3) and above 7 K in FeSb(2). Formation of such SP band states can explain many of the low-temperature properties of these materials.

3.
J Phys Condens Matter ; 22(49): 495601, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21406786

RESUMO

Muon spin rotation/relaxation spectroscopy has been employed to study electron localization into a bound magnetic polaron around the positive muon in the 3d magnetic spinel semiconductor CdCr2Se4 at temperatures up to 300 K (far above the ferromagnetic transition at Tc = 130 K) in magnetic fields up to 7 T. Electron localization into a magnetic polaron occurs due to its strong exchange interaction with the magnetic 3d electrons of local Cr(3 +) ions, which confines its wavefunction to within R≈0.3 nm, allowing significant overlap with both the nearest and the next nearest shells of Cr ions. Formation of such magnetic polarons may explain peculiar electronic and magnetic properties of magnetic semiconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA