RESUMO
In response to DNA double-strand breaks (DSB), histone H2AX is phosphorylated around the lesion by a feed forward signal amplification loop, originating γH2AX foci detectable by immunofluorescence and confocal microscopy as elliptical areas of uniform intensity. We exploited the significant increase in resolution (~ × 10) provided by single-molecule localization microscopy (SMLM) to investigate at nanometer scale the distribution of γH2AX signals either endogenous (controls) or induced by the radiomimetic bleomycin (BLEO) in HeLa cells. In both conditions, clustered substructures (nanofoci) confined to γH2AX foci and scattered nanofoci throughout the remnant nuclear area were detected. SR-Tesseler software (Voronoï tessellation-based segmentation) was combined with a custom Python script to first separate clustered nanofoci inside γH2AX foci from scattered nanofoci, and then to perform a cluster analysis upon each nanofoci type. Compared to controls, γH2AX foci in BLEO-treated nuclei presented on average larger areas (0.41 versus 0.19 µm2), more nanofoci per focus (22.7 versus 13.2) and comparable nanofoci densities (~ 60 nanofoci/µm2). Scattered γH2AX nanofoci were equally present (~ 3 nanofoci/µm2), suggesting an endogenous origin. BLEO-treated cells were challenged with specific inhibitors of canonical H2AX kinases, namely: KU-55933, VE-821 and NU-7026 for ATM, ATR and DNA-PK, respectively. Under treatment with pooled inhibitors, clustered nanofoci vanished from super-resolution images while scattered nanofoci decreased (~ 50%) in density. Residual scattered nanofoci could reflect, among other alternatives, H2AX phosphorylation mediated by VRK1, a recently described non-canonical H2AX kinase. In addition to H2AX findings, an analytical approach to quantify clusters of highly differing density from SMLM data is put forward.
Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Proteína Quinase Ativada por DNA , Histonas/metabolismo , Proteínas de Neoplasias , Inibidores de Proteínas Quinases/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Proteína Quinase Ativada por DNA/metabolismo , Células HeLa , Humanos , Microscopia Confocal , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismoRESUMO
Poly(ADP-ribosyl)polymerase (PARP) synthesizes poly(ADP-ribose) (PAR), which is anchored to proteins. PAR facilitates multiprotein complexes' assembly. Nuclear PAR affects chromatin's structure and functions, including transcriptional regulation. In response to stress, particularly genotoxic stress, PARP activation facilitates DNA damage repair. The PARP inhibitor Olaparib (OLA) displays synthetic lethality with mutated homologous recombination proteins (BRCA-1/2), base excision repair proteins (XRCC1, Polß), and canonical nonhomologous end joining (LigIV). However, the limits of synthetic lethality are not clear. On one hand, it is unknown whether any limiting factor of homologous recombination can be a synthetic PARP lethality partner. On the other hand, some BRCA-mutated patients are not responsive to OLA for still unknown reasons. In an effort to help delineate the boundaries of synthetic lethality, we have induced DNA damage in VERO cells with the radiomimetic chemotherapeutic agent bleomycin (BLEO). A VERO subpopulation was resistant to BLEO, BLEO + OLA, and BLEO + OLA + ATM inhibitor KU55933 + DNA-PK inhibitor KU-0060648 + LigIV inhibitor SCR7 pyrazine. Regarding the mechanism(s) behind the resistance and lack of synthetic lethality, some hypotheses have been discarded and alternative hypotheses are suggested.
Assuntos
Bleomicina/farmacologia , Cromonas/farmacologia , Morfolinas/farmacologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Pirimidinas/farmacologia , Pironas/farmacologia , Bases de Schiff/farmacologia , Tiofenos/farmacologia , Animais , Antineoplásicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Chlorocebus aethiops , DNA Ligase Dependente de ATP/antagonistas & inibidores , Reparo do DNA/efeitos dos fármacos , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Combinação de Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Células VeroRESUMO
Exposure to DNA damaging agents triggers phosphorylation of histone variant H2AX (generating γH2AX) in large chromatin regions flanking DNA lesions, allowing their immunodetection as nuclear foci. Even though a predominance of γH2AX foci in euchromatin has been postulated, foci positioning when DNA insult occurs in replicating eu- or heterochromatin regions has not been extensively explored. Labeling of interphase nuclei with 5-ethynyl-2'-deoxyuridine (EdU) pulses has revealed that DNA replication is temporarily and spatially regulated: euchromatin replicates in early S (ES) and heterochromatin along mid and late S (MS/LS) phases. In order to map DNA damage with respect to replicating domains, the distribution of γH2AX foci induced by the radiomimetic agent bleomycin was analyzed in CHO9 interphase nuclei by delineating euchromatic (H3K4me3+) and replicating (EdU+) regions. Quantification of overlapping pixels and 3D inter-object overlap in binary masks revealed colocalization between γH2AX foci and EdU + domains both in ES and MS/LS nuclei, indicating that primary damage distribution is modulated by DNA synthesis. Further, we verified that EdU incorporation by itself did not influence BLEO-induced γH2AX nuclear patterns. Our results also revealed a repeated localization of γH2AX foci in replicating/nonreplicating interfaces which could reflect short-range chromatin migration following DNA insult.
Assuntos
Núcleo Celular/genética , Replicação do DNA/genética , Histona Desmetilases/genética , Histonas/genética , Animais , Bleomicina/administração & dosagem , Células CHO , Núcleo Celular/efeitos dos fármacos , Cricetulus , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/efeitos dos fármacos , Eucromatina/efeitos dos fármacos , Eucromatina/genética , Heterocromatina/efeitos dos fármacos , Heterocromatina/genética , Interfase/genética , FosforilaçãoRESUMO
DNA damage may lead to cell transformation, senescence, or death. Histone H2AX phosphorylation, immunodetected as γH2AX foci, is an early response to DNA damage persisting even after DNA repair. In cycling mammalian cells with canonical nuclear architecture, i.e., central euchromatin and peripheral heterochromatin, γH2AX foci map preferentially to euchromatin. Mice retina rods are G0 cells displaying an inverted nuclear architecture 28 days after birth (P28). Rod nuclei exhibit one or two central constitutive heterochromatin chromocenters encircled by facultative heterochromatin. Euchromatin resides at the nuclear periphery, extending to the equator in cells with two chromocenters. To assess the impact of chromatin relocation in the localization of DNA damage, γH2AX and TUNEL foci induced ex vivo by radiomimetic bleomycin were mapped in H3K4me3 immunolabeled P28 rod nuclei. A preferential localization of γH2AX foci in euchromatin was detected together with foci clustering. Besides, a decay of H3K4me3 signal at γH2AX foci sites was observed. TUNEL and γH2AX foci exhibited similar localization patterns in BLM-treated rod cells thus excluding curtailed access of anti-γH2AX antibodies to heterochromatin. Lack of γH2AX foci in rod chromocenters appears to be unrelated to the occurrence of mid-range foci movements. Foci clusters may arise through DNA double-strand break proximity, local non-directional chromatin movements or chromatin relaxation. H3K4me3 signal reduction at γH2AX foci could stem from local chromatin decondensation or downregulation of histone H4 methylation. The observed topology of DNA damage in retina-differentiated rods indicates that euchromatin is damage-prone, regardless of the canonical or inverted nuclear architecture of mammalian cells.
Assuntos
Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Eucromatina/metabolismo , Heterocromatina/efeitos dos fármacos , Histonas/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Animais , Bleomicina/efeitos adversos , Cisteína Endopeptidases/metabolismo , Reparo do DNA/efeitos dos fármacos , Eucromatina/genética , Heterocromatina/metabolismo , Histonas/genética , Processamento de Imagem Assistida por Computador , Marcação In Situ das Extremidades Cortadas , Leucina/análogos & derivados , Leucina/farmacologia , Camundongos , Família Multigênica , Fosforilação , Células Fotorreceptoras Retinianas Bastonetes/metabolismoRESUMO
DNA damage response (DDR) constitutes a protein pathway to handle eukaryotic DNA lesions in the context of chromatin. DDR engages the recruitment of signaling, transducer, effector, chromatin modifiers and remodeling proteins, allowing cell cycle delay, DNA repair or induction of senescence or apoptosis. An early DDR-event includes the epigenetic phosphorylation of the histone variant H2AX on serine 139 of the C-termini, so-called gammaH2AX. GammaH2AX foci detected by immunolabeling on interphase nuclei have been largely studied; nonetheless gammaH2AX signals on mitotic chromosomes are less understood. The CHO9 cell line is a subclone of CHO (Chinese hamster ovary) cells with original and rearranged Z chromosomes originated during cell line transformation. As a result, homologous chromosome regions have been relocated in different Z-chromosomes. In a first quantitative analysis of gammaH2AX signals on immunolabeled mitotic chromosomes of cytocentrifuged metaphase spreads, we reported that gammaH2AX139 signals of both control and bleomycin-exposed cultures showed statistically equal distribution between CHO9 homologous chromosome regions, suggesting a possible dependence on the structure/function of chromatin. We have also demonstrated that bleomycin-induced gammaH2AX foci map preferentially to DNA replicating domains in CHO9 interphase nuclei. With the aim of understanding the role of gammaH2AX signals on metaphase chromosomes, the relation between 5-ethynyl-2'-deoxyuridine (EdU) labeled replicating chromosome regions and gammaH2AX signals in immunolabeled cytocentrifuged metaphase spreads from control and bleomycin-treated CHO9 cultures was analyzed in the present work. A quantitative analysis of colocalization between EdU and gammaH2AX signals based on the calculation of the Replication Related Damage Distribution Index (RDDI) on confocal metaphase images was performed. RDDI revealed a colocalization between EdU and gammaH2AX signals both in control and bleomycin-treated CHO9 metaphases, suggesting that replication may be involved in H2AX phosphorylation. The possible mechanisms implicated are discussed.