Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 15(3): 675-83, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19040228

RESUMO

The vacuum-UV (VUV)-induced conversion of commercially available poly(1,1-dimethylsilazane-co-1-methylsilazane) into methyl-Si-O-Si networks was studied using UV sources at wavelengths around 172, 185, and 222 nm, respectively. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS), X-ray photo electron spectroscopy (XPS), and Fourier transform infrared (FTIR) measurements, as well as kinetic investigations, were carried out to elucidate the degradation process. First-order kinetics were found for the photolytically induced decomposition of the Si-NH-Si network, the subsequent formation of the methyl-Si-O-Si network and the concomitant degradation of the Si-CH(3) bond, which were additionally independent of the photon energy above a threshold of about 5.5 eV (225 nm). The kinetics of these processes were, however, dependent on the dose actually absorbed by the layer and, in the case of Si-O-Si formation, additionally on the oxygen concentration. The release of ammonia and methane accompanied the conversion process. Quantum-chemical calculations on methyl substituted cyclotetrasilazanes as model compounds substantiate the suggested reaction scheme. Layers <100 nm in thickness based on mixtures of poly(1,1-dimethylsilazane-co-1-methylsilazane) and perhydropolysilazane (PHPS) were coated onto polyethylene terephthalate (PET) foils by a continuous roll to roll process and cured by VUV irradiation by using wavelengths <200 nm and investigated for their O(2) and water vapor-barrier properties. It was found that the resulting layers displayed oxygen and water vapor transmission rates (OTR and WVTR, respectively) of <1 cm(3) m(-2) d(-1) bar(-1) and <4 g m(-2) d(-1), respectively.

2.
Chemistry ; 13(30): 8522-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17639521

RESUMO

The photochemical conversion of 200-500 nm layers of perhydropolysilazane --(SiH2-NH)n-- (PHPS) in the presence of oxygen into an SiOx network was studied. Different UV sources in the wavelength range of 160-240 nm, that is, 172 nm Xe2* and 222 nm KrCl* excimer, and 185 nm Hg low-pressure (HgLP) lamps were used for these purposes. The role of both ozone and O(1D) as well as of catalytic amounts of tertiary amines in the degradation process of PHPS and the formation of SiOx were studied. In this context, the kinetics of the entire reaction were elucidated and allowed both a continuous and discontinuous process to be established for the production of fully transparent, flexible barrier coatings. Barrier improvement factors (BIFs) of 400 were achieved with one single layer on 23 microm poly(ethyleneterephthalate) (PET), which translated into oxygen transmission rates (OTRs) of 0.20 cm3 m(-2) day(-1) bar(-1). Double layers prepared by this technique allowed the realization of OTRs of or=800.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA