Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38811407

RESUMO

Optical biosensors have employed at least three distinct system architectures over the last 40 years, moving from "sample in-answer out" systems to completely embedding the optical biosensor into the sample to embedding the recognition module in the sample and optically interrogating the recognition module from outside of the sample. This trends article provides an overview of the evolution of these three system architectures and discusses how each architecture has been applied to solve the measurement challenges of a wide variety of applications. A fourth biosensor system architecture, that of an "autonomous" biosensor which "takes the user out of the loop" while both detecting target analytes and responding to that measurement, is currently under development for applications initially including environmental cleanup and "smart therapeutics." As is the case in many other areas of technology, it will be profoundly interesting to observe the further development and application of elegant, simpler (optical) biosensor systems to address tomorrow's measurement needs.

2.
Environ Health ; 22(1): 87, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098045

RESUMO

BACKGROUND: Exposure to per- and poly-fluoroalkyl substances (PFAS) has been associated with significant alterations in female reproductive health. These include changes in menstrual cyclicity, timing of menarche and menopause, and fertility outcomes, as well as increased risk of endometriosis, all of which may contribute to an increased risk of endometrial cancer. The effect of PFAS on endometrial cancer cells, specifically altered treatment response and biology, however, remains poorly studied. Like other gynecologic malignancies, a key contributor to lethality in endometrial cancer is resistance to chemotherapeutics, specifically to platinum-based agents that are used as the standard of care for patients with advanced-stage and/or recurrent disease. OBJECTIVES: To explore the effect of environmental exposures, specifically PFAS, on platinum-based chemotherapy response and mitochondrial function in endometrial cancer. METHODS: HEC-1 and Ishikawa endometrial cancer cells were exposed to sub-cytotoxic nanomolar and micromolar concentrations of PFAS/PFAS mixtures and were treated with platinum-based chemotherapy. Survival fraction was measured 48-h post-chemotherapy treatment. Mitochondrial membrane potential was evaluated in both cell lines following exposure to PFAS ± chemotherapy treatment. RESULTS: HEC-1 and Ishikawa cells displayed differing outcomes after PFAS exposure and chemotherapy treatment. Cells exposed to PFAS appeared to be less sensitive to carboplatin, with instances of increased survival fraction, indicative of platinum resistance, observed in HEC-1 cells. In Ishikawa cells treated with cisplatin, PFAS mixture exposure significantly decreased survival fraction. In both cell lines, increases in mitochondrial membrane potential were observed post-PFAS exposure ± chemotherapy treatment. DISCUSSION: Exposure of endometrial cancer cell lines to PFAS/PFAS mixtures had varying effects on response to platinum-based chemotherapies. Increased survival fraction post-PFAS + carboplatin treatment suggests platinum resistance, while decreased survival fraction post-PFAS mixture + cisplatin exposure suggests enhanced therapeutic efficacy. Regardless of chemotherapy sensitivity status, mitochondrial membrane potential findings suggest that PFAS exposure may affect endometrial cancer cell mitochondrial functioning and should be explored further.


Assuntos
Neoplasias do Endométrio , Fluorocarbonos , Feminino , Humanos , Carboplatina/toxicidade , Carboplatina/uso terapêutico , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Platina/uso terapêutico , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/induzido quimicamente , Linhagem Celular
3.
Anal Bioanal Chem ; 413(1): 35-48, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32944809

RESUMO

In the recent SARS-CoV-2 pandemic, public health experts have emphasized testing, tracking infected people, and tracing their contacts as an effective strategy to reduce the spread of the virus. Several diagnostic methods are reported for detecting the coronavirus in clinical, research, and public health laboratories. Some tests detect the infection directly by detecting the viral RNA and other tests detect the infection indirectly by detecting the host antibodies. A diagnostic test during the pandemic should help make an appropriate clinical decision in a short period of time. Recently reported diagnostic methods for SARS-CoV-2 have varying throughput, batching capacity, requirement of infrastructure setting, analytical performance, and turnaround times ranging from a few minutes to several hours. These factors should be considered while selecting a reliable and rapid diagnostic method to help make an appropriate decision and prompt public health interventions. This paper reviews recent SARS-CoV-2 diagnostic methods published in journals and reports released by regulatory agencies. We compared the analytical efficiency including limit of detection, sensitivity, specificity, and throughput. In addition, we also looked into ease of use, affordability, and availability of accessories. Finally, we discuss the limitations of the methods and provide our perspectives on priorities for future test development.


Assuntos
COVID-19/diagnóstico , SARS-CoV-2/isolamento & purificação , Anticorpos Antivirais/análise , COVID-19/epidemiologia , COVID-19/virologia , Humanos , Pandemias , RNA Viral/genética , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Sensibilidade e Especificidade
4.
Nat Chem Biol ; 14(1): 86-93, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29083418

RESUMO

Generating artificial pancreatic beta cells by using synthetic materials to mimic glucose-responsive insulin secretion in a robust manner holds promise for improving clinical outcomes in people with diabetes. Here, we describe the construction of artificial beta cells (AßCs) with a multicompartmental 'vesicles-in-vesicle' superstructure equipped with a glucose-metabolism system and membrane-fusion machinery. Through a sequential cascade of glucose uptake, enzymatic oxidation and proton efflux, the AßCs can effectively distinguish between high and normal glucose levels. Under hyperglycemic conditions, high glucose uptake and oxidation generate a low pH (<5.6), which then induces steric deshielding of peptides tethered to the insulin-loaded inner small liposomal vesicles. The peptides on the small vesicles then form coiled coils with the complementary peptides anchored on the inner surfaces of large vesicles, thus bringing the membranes of the inner and outer vesicles together and triggering their fusion and insulin 'exocytosis'.


Assuntos
Células Artificiais , Materiais Biomiméticos/química , Engenharia Celular/métodos , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Fusão de Membrana , Animais , Glicemia/análise , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/tratamento farmacológico , Concentração de Íons de Hidrogênio , Insulina/sangue , Secreção de Insulina , Masculino , Camundongos Endogâmicos C57BL
5.
J Phys D Appl Phys ; 53(22)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-33840837

RESUMO

Mechanical forces regulate a diverse set of biological processes at cellular, tissue, and organismal length scales. Investigating the cellular and molecular mechanisms that underlie the conversion of mechanical forces to biological responses is challenged by limitations of traditional animal models and in vitro cell culture, including poor control over applied force and highly artificial cell culture environments. Recent advances in fabrication methods and material processing have enabled the development of microfluidic platforms that provide precise control over the mechanical microenvironment of cultured cells. These devices and systems have proven to be powerful for uncovering and defining mechanisms of mechanotransduction. In this review, we first give an overview of the main mechanotransduction pathways that function at sites of cell adhesion, many of which have been investigated with microfluidics. We then discuss how distinct microfluidic fabrication methods can be harnessed to gain biological insight, with description of both monolithic and replica molding approaches. Finally, we present examples of how microfluidics can be used to apply both solid forces (substrate mechanics, strain, and compression) and fluid forces (luminal, interstitial) to cells. Throughout the review, we emphasize the advantages and disadvantages of different fabrication methods and applications of force in order to provide perspective to investigators looking to apply forces to cells in their own research.

6.
Anal Chem ; 91(14): 8732-8738, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31276374

RESUMO

Optical biosensors are defined as portable optical devices that use biorecognition molecules to interrogate a sample for the presence of a target. The capabilities of optical biosensors have expanded rapidly with advances in miniature optical components and molecular engineering. Biosensors to meet the needs in health and environmental monitoring and food safety have become commercially available, with many more in the pipeline. We review the innovative approaches to overcoming existing hurdles to practical biosensor designs and explore potential areas for future breakthroughs in optical biosensor technology.


Assuntos
Técnicas Biossensoriais/instrumentação , Óptica e Fotônica/instrumentação , Animais , Técnicas Biossensoriais/métodos , Desenho de Equipamento , Humanos , Dispositivos Ópticos , Óptica e Fotônica/métodos
7.
Adv Funct Mater ; 29(4)2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-32256277

RESUMO

Cardiovascular disease is the leading cause of mortality worldwide. While reperfusion therapy is vital for patient survival post-heart attack, it also causes further tissue injury, known as myocardial ischemia/reperfusion (I/R) injury in clinical practice. Exploring ways to attenuate I/R injury is of clinical interest for improving post-ischemic recovery. A platelet-inspired nanocell (PINC) that incorporates both prostaglandin E2 (PGE2)-modified platelet membrane and cardiac stromal cell-secreted factors to target the heart after I/R injury is introduced. By taking advantage of the natural infarct-homing ability of platelet membrane and the overexpression of PGE2 receptors (EPs) in the pathological cardiac microenvironment after I/R injury, the PINCs can achieve targeted delivery of therapeutic payload to the injured heart. Furthermore, a synergistic treatment efficacy can be achieved by PINC, which combines the paracrine mechanism of cell therapy with the PGE2/EP receptor signaling that is involved in the repair and regeneration of multiple tissues. In a mouse model of myocardial I/R injury, intravenous injection of PINCs results in augmented cardiac function and mitigated heart remodeling, which is accompanied by the increase in cycling cardiomyocytes, activation of endogenous stem/progenitor cells, and promotion of angiogenesis. This approach represents a promising therapeutic delivery platform for treating I/R injury.

8.
Proc Natl Acad Sci U S A ; 112(27): 8260-5, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26100900

RESUMO

A glucose-responsive "closed-loop" insulin delivery system mimicking the function of pancreatic cells has tremendous potential to improve quality of life and health in diabetics. Here, we report a novel glucose-responsive insulin delivery device using a painless microneedle-array patch ("smart insulin patch") containing glucose-responsive vesicles (GRVs; with an average diameter of 118 nm), which are loaded with insulin and glucose oxidase (GOx) enzyme. The GRVs are self-assembled from hypoxia-sensitive hyaluronic acid (HS-HA) conjugated with 2-nitroimidazole (NI), a hydrophobic component that can be converted to hydrophilic 2-aminoimidazoles through bioreduction under hypoxic conditions. The local hypoxic microenvironment caused by the enzymatic oxidation of glucose in the hyperglycemic state promotes the reduction of HS-HA, which rapidly triggers the dissociation of vesicles and subsequent release of insulin. The smart insulin patch effectively regulated the blood glucose in a mouse model of chemically induced type 1 diabetes. The described work is the first demonstration, to our knowledge, of a synthetic glucose-responsive device using a hypoxia trigger for regulation of insulin release. The faster responsiveness of this approach holds promise in avoiding hyperglycemia and hypoglycemia if translated for human therapy.


Assuntos
Glicemia/análise , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Insulina/administração & dosagem , Animais , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Tipo 1/sangue , Sistemas de Liberação de Medicamentos/instrumentação , Glucose/metabolismo , Glucose Oxidase/metabolismo , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/metabolismo , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/química , Hipóxia/metabolismo , Insulina/química , Insulina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Oxirredução , Reprodutibilidade dos Testes
9.
Nano Lett ; 17(2): 733-739, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28079384

RESUMO

A glucose-responsive closed-loop insulin delivery system mimicking pancreas activity without long-term side effect has the potential to improve diabetic patients' health and quality of life. Here, we developed a novel glucose-responsive insulin delivery device using a painless microneedle-array patch containing insulin-loaded vesicles. Formed by self-assembly of hypoxia and H2O2 dual-sensitive diblock copolymer, the glucose-responsive polymersome-based vesicles (d-GRPs) can disassociate and subsequently release insulin triggered by H2O2 and hypoxia generated during glucose oxidation catalyzed by glucose specific enzyme. Moreover, the d-GRPs were able to eliminate the excess H2O2, which may lead to free radical-induced damage to skin tissue during the long-term usage and reduce the activity of GOx. In vivo experiments indicated that this smart insulin patch could efficiently regulate the blood glucose in the chemically induced type 1 diabetic mice for 10 h.


Assuntos
Portadores de Fármacos/química , Glucose/metabolismo , Peróxido de Hidrogênio/metabolismo , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Animais , Glicemia/metabolismo , Hipóxia Celular , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Liberação Controlada de Fármacos , Glucose Oxidase/metabolismo , Células HeLa , Humanos , Hipoglicemiantes/química , Insulina/química , Masculino , Camundongos Endogâmicos C57BL , Nitroimidazóis/química , Oxirredução , Peptídeos/química , Polietilenoglicóis/química
10.
Anal Chem ; 89(8): 4377-4381, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28350460

RESUMO

An understanding of fluid transport through porous materials is critical for the development of lateral flow assays and analytical devices based on paper microfluidics. Models of fluid transport within porous materials often assume a single capillary pressure and permeability value for the material, implying that the material comprises a single pore size and that the porous material is fully saturated behind the visible wetted front. As a result, current models can lead to inaccuracies when modeling transport over long distances and/or times. A new transport model is presented that incorporates a range of pore sizes to more accurately predict the capillary transport of fluid in porous materials. The model effectively predicts the time-dependent saturation of rectangular strips of Whatman filter no. 1 paper using the manufacturer's data, published pore-size distribution measurements, and the fluid's properties.

11.
Chemphyschem ; 17(14): 2218-24, 2016 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-27062216

RESUMO

Early studies showed that the adsorption of nanorods may start from a special "anchored" state, in which the nanorods lose translational motion but retain rotational freedom. Insight into how the anchored nanorods rotate should provide additional dimensions for understanding particle-surface interactions. Based on conventional time-resolution studies, gold nanorods are thought to continuously rotate following initial interactions with negatively charged glass surfaces. However, this nanosecond time-resolution study reveals that the apparent continuous rotation actually consists of numerous fast, intermittent rotations or transitions between a small number of weakly immobilized states, with the particle resting in the immobilized states most of the time. The actual rotation from one immobilized state to the other happens on a 1 ms timescale, that is, approximately 50 times slower than in the bulk solution.

12.
Anal Bioanal Chem ; 407(3): 719-25, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25303932

RESUMO

Measuring temperature is an extensively explored field of analysis, but measuring a temperature change in a nanoparticle is a new challenge. Here, a microsensor is configured to measure temperature changes in gold nanorods in solution upon laser irradiation. The device consists of a silicon wafer coated with silicon nitride in which a microfabricated resistance temperature detector was embedded and attached to a digital multimeter. A polydimethylsiloxane mold served as a microcontainer for the sample attached on top of the silicon membrane. This enables laser irradiation of the gold nanorods and subsequent measurement of temperature changes. The results showed a temperature increase of 8 to 10 °C and good correlation with theoretical calculations and bulk sample direct temperature measurements. These results demonstrate the suitability of this simple temperature microsensor for determining laser-induced heating profiles of metallic nanomaterials; such measurements will be essential for optimizing therapeutic and catalytic applications.


Assuntos
Técnicas de Química Analítica/instrumentação , Lasers , Nanotubos/análise , Técnicas de Química Analítica/métodos , Desenho de Equipamento , Ouro , Calefação , Temperatura Alta , Microtecnologia
13.
Sensors (Basel) ; 15(9): 24178-90, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26393614

RESUMO

Stimulated emission depletion (STED) microscopy provides a new opportunity to study fine sub-cellular structures and highly dynamic cellular processes, which are challenging to observe using conventional optical microscopy. Using actin as an example, we explored the feasibility of using a continuous wave (CW)-STED microscope to study the fine structure and dynamics in fixed and live cells. Actin plays an important role in cellular processes, whose functioning involves dynamic formation and reorganization of fine structures of actin filaments. Frequently used confocal fluorescence and STED microscopy dyes were employed to image fixed PC-12 cells (dyed with phalloidin- fluorescein isothiocyante) and live rat chondrosarcoma cells (RCS) transfected with actin-green fluorescent protein (GFP). Compared to conventional confocal fluorescence microscopy, CW-STED microscopy shows improved spatial resolution in both fixed and live cells. We were able to monitor cell morphology changes continuously; however, the number of repetitive analyses were limited primarily by the dyes used in these experiments and could be improved with the use of dyes less susceptible to photobleaching. In conclusion, CW-STED may disclose new information for biological systems with a proper characteristic length scale. The challenges of using CW-STED microscopy to study cell structures are discussed.


Assuntos
Citoesqueleto de Actina/metabolismo , Imageamento Tridimensional/instrumentação , Microscopia/instrumentação , Fixação de Tecidos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Condrócitos/citologia , Fluorescência , Microscopia Confocal , Células PC12 , Ratos
14.
Anal Chem ; 86(24): 12315-20, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25383912

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is generally performed on planar surfaces, which can be difficult to prepare and may limit the interaction of the sensing surface with targets in large volume samples. We propose that nanocomposite materials can be configured that both include SERS probes and provide a high surface area-to-volume format, i.e., fibers. Thiol-yne nanocomposite films and fibers were fabricated using exposure to long-wave ultraviolet light after the inclusion of gold nanoparticles (AuNPs) functionalized with thiophenol. A SERS response was observed that was proportional to the aggregation of the AuNPs within the polymers and the amount of thiophenol present. Overall, this proof-of-concept fabrication of SERS active polymers indicated that thiol-yne nanocomposites may be useful as durable film or fiber SERS probes. Properties of the nanocomposites were evaluated using various techniques including UV-vis spectroscopy, µ-Raman spectroscopy, dynamic mechanical analysis, differential scanning calorimetry, thermogravimetric analysis, and transmission electron microscopy.


Assuntos
Nanocompostos , Análise Espectral Raman/métodos , Compostos de Sulfidrila/química , Espectrofotometria Ultravioleta , Propriedades de Superfície
15.
Photochem Photobiol ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849970

RESUMO

Resistance to platinum-based chemotherapies remains a significant challenge in advanced-stage high-grade serous ovarian carcinoma, and patients with malignant ascites face the poorest outcomes. It is, therefore, important to understand the effects of ascites, including the associated fluid shear stress (FSS), on phenotypic changes and therapy response, specifically FSS-induced chemotherapy resistance and the underlying mechanisms in ovarian cancer. This study investigated the effects of FSS on response to cisplatin, a platinum-based chemotherapy, and doxorubicin, an anthracycline, both of which are commonly used to manage advanced-stage ovarian cancer. Consistent with prior research, OVCAR-3 and Caov-3 cells cultivated under FSS demonstrated significant resistance to cisplatin. Examination of the role of mitochondria revealed an increase in mitochondrial DNA copy number and intracellular ATP content in cultures grown under FSS, suggesting that changes in mitochondria number and metabolic activity may contribute to platinum resistance. Interestingly, no resistance to doxorubicin was observed under FSS, the first such observation of a lack of resistance under these conditions. Finally, this study demonstrated the potential of photodynamic priming using benzoporphyrin derivative, a clinically approved photosensitizer that localizes in part to mitochondria and endoplasmic reticula, to enhance the efficacy of cisplatin, but not doxorubicin, thereby overcoming FSS-induced platinum resistance.

16.
Front Pharmacol ; 15: 1348172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344174

RESUMO

Introduction: One major obstacle in validating drugs for the treatment or prevention of hearing loss is the limited data available on the distribution and concentration of drugs in the human inner ear. Although small animal models offer some insights into inner ear pharmacokinetics, their smaller organ size and different barrier (round window membrane) permeabilities compared to humans can complicate study interpretation. Therefore, developing a reliable large animal model for inner ear drug delivery is crucial. The inner and middle ear anatomy of domestic pigs closely resembles that of humans, making them promising candidates for studying inner ear pharmacokinetics. However, unlike humans, the anatomical orientation and tortuosity of the porcine external ear canal frustrates local drug delivery to the inner ear. Methods: In this study, we developed a surgical technique to access the tympanic membrane of pigs. To assess hearing pre- and post-surgery, auditory brainstem responses to click and pure tones were measured. Additionally, we performed 3D segmentation of the porcine inner ear images and used this data to simulate the diffusion of dexamethasone within the inner ear through fluid simulation software (FluidSim). Results: We have successfully delivered dexamethasone and dexamethasone sodium phosphate to the porcine inner ear via the intratympanic injection. The recorded auditory brainstem measurements revealed no adverse effects on hearing thresholds attributable to the surgery. We have also simulated the diffusion rates for dexamethasone and dexamethasone sodium phosphate into the porcine inner ear and confirmed the accuracy of the simulations using in-vivo data. Discussion: We have developed and characterized a method for conducting pharmacokinetic studies of the inner ear using pigs. This animal model closely mirrors the size of the human cochlea and the thickness of its barriers. The diffusion time and drug concentrations we reported align closely with the limited data available from human studies. Therefore, we have demonstrated the potential of using pigs as a large animal model for studying inner ear pharmacokinetics.

17.
Anal Chem ; 85(10): 4944-50, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23631439

RESUMO

An integrated system with automated immunomagnetic separation and processing of fluidic samples was demonstrated for multiplexed optical detection of bacterial targets. Mixtures of target-specific magnetic bead sets were processed in the NRL MagTrap with the aid of rotating magnet arrays that entrapped and moved the beads within the channel during reagent processing. Processing was performed in buffer and human serum matrixes with 10-fold dilutions in the range of 10(2)-10(6) cells/mL of target bacteria. Reversal of magnets' rotation post-processing released the beads back into the flow and moved them into the microflow cytometer for optical interrogation. Identification of the beads and the detection of PE fluorescence were performed simultaneously for multiplexed detection. Multiplexing was performed with specifically targeted bead sets to detect E. coli 0157.H7, Salmonella Common Structural Antigen, Listeria sp., and Shigella sp., dose-response curves were obtained, and limits of detection were calculated for each target in the buffer and clinical matrix. Additional tests demonstrated the potential for using the MagTrap to concentrate target from larger volumes of sample prior to the addition of assay reagents.


Assuntos
Bactérias/isolamento & purificação , Citometria de Fluxo/instrumentação , Separação Imunomagnética/instrumentação , Análise em Microsséries/instrumentação , Integração de Sistemas , Bactérias/citologia , Humanos
18.
Anal Bioanal Chem ; 405(16): 5611-4, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23649924

RESUMO

Bacterial infection and intoxication can present with common symptoms. The ability to identify a bacteria or toxin rapidly in clinical samples is critical for administering the appropriate treatment. The microflow cytometer has previously demonstrated the ability to test for six bacteria and toxins simultaneously in buffer. In this study, the number of bacteria and toxins analyzed was increased to ten, positive and negative controls were incorporated in all assays, and most importantly, multiplexed immunoassays were demonstrated in clinical matrices. The multiplexed assays using the microflow cytometer demonstrated detection limits similar to or better than other reported antibody-based methods for pathogen detection (ELISA, lateral flow, array biosensors). In most cases, detection from complex clinical matrices (serum and nasal wash) achieved limits of detection equivalent to those for spiked buffer samples. Clinical samples spiked with bacteria and/or toxins were also analyzed successfully in blind trials.


Assuntos
Bactérias/isolamento & purificação , Toxinas Bacterianas/análise , Citometria de Fluxo/instrumentação , Toxinas Bacterianas/sangue , Estudos de Casos e Controles , Citometria de Fluxo/métodos , Humanos , Imunoensaio , Limite de Detecção , Distribuição Aleatória , Ricina/análise
19.
STAR Protoc ; 4(2): 102220, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37060559

RESUMO

The inner ear of humans and large animals is embedded in a thick and dense bone that makes dissection challenging. Here, we present a protocol that enables three-dimensional (3D) characterization of intact inner ears from large-animal models. We describe steps for decalcifying bone, using solvents to remove color and lipids, and imaging tissues in 3D using confocal and light sheet microscopy. We then detail a pipeline to count hair cells in antibody-stained and 3D imaged cochleae using open-source software. For complete details on the use and execution of this protocol, please refer to (Moatti et al., 2022).1.

20.
PNAS Nexus ; 2(10): pgad313, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37829844

RESUMO

Time-resolved techniques have been widely used in time-gated and luminescence lifetime imaging. However, traditional time-resolved systems require expensive lab equipment such as high-speed excitation sources and detectors or complicated mechanical choppers to achieve high repetition rates. Here, we present a cost-effective and miniaturized smartphone lifetime imaging system integrated with a pulsed ultraviolet (UV) light-emitting diode (LED) for 2D luminescence lifetime imaging using a videoscopy-based virtual chopper (V-chopper) mechanism combined with machine learning. The V-chopper method generates a series of time-delayed images between excitation pulses and smartphone gating so that the luminescence lifetime can be measured at each pixel using a relatively low acquisition frame rate (e.g. 30 frames per second [fps]) without the need for excitation synchronization. Europium (Eu) complex dyes with different luminescent lifetimes ranging from microseconds to seconds were used to demonstrate and evaluate the principle of V-chopper on a 3D-printed smartphone microscopy platform. A convolutional neural network (CNN) model was developed to automatically distinguish the gated images in different decay cycles with an accuracy of >99.5%. The current smartphone V-chopper system can detect lifetime down to ∼75 µs utilizing the default phase shift between the smartphone video rate and excitation pulses and in principle can detect much shorter lifetimes by accurately programming the time delay. This V-chopper methodology has eliminated the need for the expensive and complicated instruments used in traditional time-resolved detection and can greatly expand the applications of time-resolved lifetime technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA