Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Physiol Plant ; 176(4): e14428, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38981693

RESUMO

Chlorophyll is essential in photosynthesis, converting sunlight into chemical energy in plants, algae, and certain bacteria. Its structure, featuring a porphyrin ring enclosing a central magnesium ion, varies in forms like chlorophyll a, b, c, d, and f, allowing light absorption at a broader spectrum. With a 20-carbon phytyl tail (except for chlorophyll c), chlorophyll is anchored to proteins. Previous findings suggested the presence of chlorophyll with a modified farnesyl tail in thermophilic cyanobacteria Thermosynechoccocus vestitus. In our Arabidopsis thaliana PSII cryo-EM map, specific chlorophylls showed incomplete phytyl tails, suggesting potential farnesyl modifications. However, further high-resolution mass spectrometry (HRMS) analysis in A. thaliana and T. vestitus did not confirm the presence of any farnesyl tails. Instead, we propose the truncated tails in PSII models may result from binding pocket flexibility rather than actual modifications.


Assuntos
Arabidopsis , Clorofila , Complexo de Proteína do Fotossistema II , Clorofila/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Arabidopsis/metabolismo , Espectrometria de Massas , Thermosynechococcus/metabolismo , Microscopia Crioeletrônica
2.
Plant J ; 108(6): 1815-1829, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34624161

RESUMO

Boreal conifers possess a tremendous ability to survive and remain evergreen during harsh winter conditions and resume growth during summer. This is enabled by coordinated regulation of major cellular functions at the level of gene expression, metabolism, and physiology. Here we present a comprehensive characterization of the annual changes in the global transcriptome of Norway spruce (Picea abies) needles as a resource to understand needle development and acclimation processes throughout the year. In young, growing needles (May 15 until June 30), cell walls, organelles, etc., were formed, and this developmental program heavily influenced the transcriptome, explained by over-represented Gene Ontology (GO) categories. Later changes in gene expression were smaller but four phases were recognized: summer (July-August), autumn (September-October), winter (November-February), and spring (March-April), where over-represented GO categories demonstrated how the needles acclimated to the various seasons. Changes in the seasonal global transcriptome profile were accompanied by differential expression of members of the major transcription factor families. We present a tentative model of how cellular activities are regulated over the year in needles of Norway spruce, which demonstrates the value of mining this dataset, accessible in ConGenIE together with advanced visualization tools.


Assuntos
Regulação da Expressão Gênica de Plantas , Picea/genética , Folhas de Planta/genética , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Ontologia Genética , Estações do Ano , Análise de Sequência de RNA , Estresse Fisiológico/genética , Suécia , Fatores de Transcrição/genética
3.
Plant Physiol ; 187(4): 2435-2450, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34636903

RESUMO

GIGANTEA (GI) genes have a central role in plant development and influence several processes. Hybrid aspen T89 (Populus tremula x tremuloides) trees with low GI expression engineered through RNAi show severely compromised growth. To study the effect of reduced GI expression on leaf traits with special emphasis on leaf senescence, we grafted GI-RNAi scions onto wild-type rootstocks and successfully restored growth of the scions. The RNAi line had a distorted leaf shape and reduced photosynthesis, probably caused by modulation of phloem or stomatal function, increased starch accumulation, a higher carbon-to-nitrogen ratio, and reduced capacity to withstand moderate light stress. GI-RNAi also induced senescence under long day (LD) and moderate light conditions. Furthermore, the GI-RNAi lines were affected in their capacity to respond to "autumn environmental cues" inducing senescence, a type of leaf senescence that has physiological and biochemical characteristics that differ from those of senescence induced directly by stress under LD conditions. Overexpression of GI delayed senescence under simulated autumn conditions. The two different effects on leaf senescence under LD or simulated autumn conditions were not affected by the expression of FLOWERING LOCUS T. GI expression regulated leaf senescence locally-the phenotype followed the genotype of the branch, independent of its position on the tree-and trees with modified gene expression were affected in a similar way when grown in the field as under controlled conditions. Taken together, GI plays a central role in sensing environmental changes during autumn and determining the appropriate timing for leaf senescence in Populus.


Assuntos
Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Senescência Vegetal/genética , Populus/fisiologia , Árvores/fisiologia , Proteínas de Plantas/metabolismo , Populus/genética , Árvores/genética
4.
Physiol Plant ; 174(3): e13690, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35460591

RESUMO

Fertilization with nitrogen (N)-rich compounds leads to increased growth but may compromise phenology and winter survival of trees in boreal regions. During autumn, N is remobilized from senescing leaves and stored in other parts of the tree to be used in the next growing season. However, the mechanism behind the N fertilization effect on winter survival is not well understood, and it is unclear how N levels or forms modulate autumn senescence. We performed fertilization experiments and showed that treating Populus saplings with inorganic nitrogen resulted in a delay in senescence. In addition, by using precise delivery of solutes into the xylem stream of Populus trees in their natural environment, we found that delay of autumn senescence was dependent on the form of N administered: inorganic N ( NO 3 - ) delayed senescence, but amino acids (Arg, Glu, Gln, and Leu) did not. Metabolite profiling of leaves showed that the levels of tricarboxylic acids, arginine catabolites (ammonium, ornithine), glycine, glycine-serine ratio and overall carbon-to-nitrogen (C/N) ratio were affected differently by the way of applying NO3 - and Arg treatments. In addition, the onset of senescence did not coincide with soluble sugar accumulation in control trees or in any of the treatments. We propose that different regulation of C and N status through direct molecular signaling of NO3 - and/or different allocation of N between tree parts depending on N forms could account for the contrasting effects of NO3 - and tested here amino acids (Arg, Glu, Gln, and Leu) on autumn senescence.


Assuntos
Nitratos , Populus , Aminoácidos , Fertilização , Glicina , Nitratos/metabolismo , Nitratos/farmacologia , Nitrogênio/metabolismo , Folhas de Planta/fisiologia , Senescência Vegetal , Populus/metabolismo , Estações do Ano , Árvores/metabolismo
5.
Physiol Plant ; 172(1): 201-217, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33368469

RESUMO

Autumn senescence in aspen (Populus tremula) is precisely timed every year to relocate nutrients from leaves to storage organs before winter. Here we demonstrate how stem girdling, which leads to the accumulation of photosynthates in the crown, influences senescence. Girdling resulted in an early onset of senescence, but the chlorophyll degradation was slower and nitrogen more efficiently resorbed than during normal autumn senescence. Girdled stems accumulated or retained anthocyanins potentially providing photoprotection in senescing leaves. Girdling of one stem in a clonal stand sharing the same root stock did not affect senescence in the others, showing that the stems were autonomous in this respect. One girdled stem with unusually high chlorophyll and nitrogen contents maintained low carbon-to-nitrogen (C/N) ratio and did not show early senescence or depleted chlorophyll level unlike the other girdled stems suggesting that the responses depended on the genotype or its carbon and nitrogen status. Metabolite analysis highlighted that the tricarboxylic acid (TCA) cycle, salicylic acid pathway, and redox homeostasis are involved in the regulation of girdling-induced senescence. We propose that disrupted sink-source relation and C/N status can provide cues through the TCA cycle and phytohormone signaling to override the phenological control of autumn senescence in the girdled stems.


Assuntos
Clorofila , Populus , Fotossíntese , Folhas de Planta , Populus/genética , Estações do Ano
6.
J Exp Bot ; 67(14): 4367-78, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27255929

RESUMO

Relative air humidity (RH) is expected to increase in northern Europe due to climate change. Increasing RH reduces the difference of water vapour pressure deficit (VPD) between the leaf and the atmosphere, and affects the gas exchange of plants. Little is known about the effects of decreased VPD on plant metabolism, especially under field conditions. This study was conducted to determine the effects of artificially decreased VPD on silver birch (Betula pendula Roth.) and hybrid aspen (Populus tremula L.×P. tremuloides Michx.) foliar metabolite and nutrient profiles in a unique free air humidity manipulation (FAHM) field experiment during the fourth season of humidity manipulation, in 2011. Long-term exposure to decreased VPD modified nutrient homeostasis in tree leaves, as demonstrated by a lower N concentration and N:P ratio in aspen leaves, and higher Na concentration and lower K:Na ratio in the leaves of both species in decreased VPD than in ambient VPD. Decreased VPD caused a shift in foliar metabolite profiles of both species, affecting primary and secondary metabolites. Metabolic adjustment to decreased VPD included elevated levels of starch and heptulose sugars, sorbitol, hemiterpenoid and phenolic glycosides, and α-tocopherol. High levels of carbon reserves, phenolic compounds, and antioxidants under decreased VPD may modify plant resistance to environmental stresses emerging under changing climate.


Assuntos
Betula/metabolismo , Folhas de Planta/metabolismo , Populus/metabolismo , Antioxidantes/análise , Antioxidantes/metabolismo , Glicosídeos/análise , Glicosídeos/metabolismo , Umidade , Fenóis/análise , Fenóis/metabolismo , Folhas de Planta/química , Sorbitol/análise , Sorbitol/metabolismo , Amido/análise , Amido/metabolismo , alfa-Tocoferol/análise , alfa-Tocoferol/metabolismo
7.
J Exp Bot ; 67(14): 4353-65, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27259554

RESUMO

Air humidity indicated as vapour pressure deficit (VPD) is directly related to transpiration and stomatal function of plants. We studied the effects of VPD and nitrogen (N) supply on leaf metabolites, plant growth, and mineral nutrition with young micropropagated silver birches (Betula pendula Roth.) in a growth chamber experiment. Plants that were grown under low VPD for 26 d had higher biomass, larger stem diameter, more leaves, fewer fallen leaves, and larger total leaf area than plants that were grown under high VPD. Initially, low VPD increased height growth rate and stomatal conductance; however, the effect was transient and the differences between low and high VPD plants became smaller with time. Metabolic adjustment to low VPD reflected N deficiency. The concentrations of N, iron, chlorophyll, amino acids, and soluble carbohydrates were lower and the levels of starch, quercetin glycosides, and raffinose were higher in the leaves that had developed under low VPD compared with high VPD. Additional N supply did not fully overcome the negative effect of low VPD on nutrient status but it diminished the effects of low VPD on leaf metabolism. Thus, with high N supply, the glutamine to glutamate ratio and starch production under low VPD became comparable with the levels under high VPD. The present study demonstrates that low VPD affects carbon and nutrient homeostasis and modifies N allocation of plants.


Assuntos
Betula/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Betula/crescimento & desenvolvimento , Metabolismo dos Carboidratos , Umidade , Estômatos de Plantas/metabolismo , Transpiração Vegetal/fisiologia
8.
Nat Commun ; 14(1): 4288, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463905

RESUMO

Deciduous trees exhibit a spectacular phenomenon of autumn senescence driven by the seasonality of their growth environment, yet there is no consensus which external or internal cues trigger it. Senescence starts at different times in European aspen (Populus tremula L.) genotypes grown in same location. By integrating omics studies, we demonstrate that aspen genotypes utilize similar transcriptional cascades and metabolic cues to initiate senescence, but at different times during autumn. The timing of autumn senescence initiation appeared to be controlled by two consecutive "switches"; 1) first the environmental variation induced the rewiring of the transcriptional network, stress signalling pathways and metabolic perturbations and 2) the start of senescence process was defined by the ability of the genotype to activate and sustain stress tolerance mechanisms mediated by salicylic acid. We propose that salicylic acid represses the onset of leaf senescence in stressful natural conditions, rather than promoting it as often observed in annual plants.


Assuntos
Transdução de Sinais , Estações do Ano , Genótipo
9.
Nat Commun ; 14(1): 3210, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270605

RESUMO

Green organisms evolve oxygen (O2) via photosynthesis and consume it by respiration. Generally, net O2 consumption only becomes dominant when photosynthesis is suppressed at night. Here, we show that green thylakoid membranes of Scots pine (Pinus sylvestris L) and Norway spruce (Picea abies) needles display strong O2 consumption even in the presence of light when extremely low temperatures coincide with high solar irradiation during early spring (ES). By employing different electron transport chain inhibitors, we show that this unusual light-induced O2 consumption occurs around photosystem (PS) I and correlates with higher abundance of flavodiiron (Flv) A protein in ES thylakoids. With P700 absorption changes, we demonstrate that electron scavenging from the acceptor-side of PSI via O2 photoreduction is a major alternative pathway in ES. This photoprotection mechanism in vascular plants indicates that conifers have developed an adaptative evolution trajectory for growing in harsh environments.


Assuntos
Pinus sylvestris , Traqueófitas , Tilacoides/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Traqueófitas/metabolismo , Fotossíntese , Transporte de Elétrons , Pinus sylvestris/metabolismo , Oxigênio/metabolismo
10.
Antioxidants (Basel) ; 11(10)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36290757

RESUMO

RADICAL-INDUCED CELL DEATH1 (RCD1) is an Arabidopsis thaliana nuclear protein that is disrupted during oxidative stress. RCD1 is considered an important integrative node in development and stress responses, and the rcd1 plants have several phenotypes and altered resistance to a variety of abiotic and biotic stresses. One of the phenotypes of rcd1 is resistance to the herbicide paraquat, but the mechanisms behind it are unknown. Paraquat causes a rapid burst of reactive oxygen species (ROS) initially in the chloroplast. We performed multi-platform metabolomic analyses in wild type Col-0 and paraquat resistant rcd1 plants to identify pathways conveying resistance and the function of RCD1 in this respect. Wild type and rcd1 plants were clearly distinguished by their abundance of antioxidants and specialized metabolites and their responses to paraquat. The lack of response in rcd1 suggested constitutively active defense against ROS via elevated flavonoid, glutathione, ß-carotene, and tocopherol levels, whereas its ascorbic acid levels were compromised under non-stressed control conditions when compared to Col-0. We propose that RCD1 acts as a hub that maintains basal antioxidant system, and its inactivation induces defense responses by enhancing the biosynthesis and redox cycling of low molecular weight antioxidants and specialized metabolites with profound antioxidant activities alleviating oxidative stress.

11.
Sci Total Environ ; 830: 154846, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35351515

RESUMO

Exposure to polycyclic aromatic hydrocarbons (PAHs) is known to affect developing organisms. Utilization of different omics-based technologies and approaches could therefore provide a base for the discovery of novel mechanisms of PAH induced development of toxicity. To this aim, we investigated how exposure towards two PAHs with different toxicity mechanisms: retene (an aryl hydrocarbon receptor 2 (Ahr2) agonist), and fluoranthene (a weak Ahr2 agonist and cytochrome P450 inhibitor (Cyp1a)), either alone or as a mixture, affected the cardiac proteome and metabolome in newly hatched rainbow trout alevins (Oncorhynchus mykiss). In total, we identified 65 and 82 differently expressed proteins (DEPs) across all treatments compared to control (DMSO) after 7 and 14 days of exposure. Exposure to fluoranthene altered the expression of 11 and 19 proteins, retene 29 and 23, while the mixture affected 44 and 82 DEPs by Days 7 and 14, respectively. In contrast, only 5 significantly affected metabolites were identified. Pathway over-representation analysis identified exposure-specific activation of phase II metabolic processes, which were accompanied with exposure-specific body burden profiles. The proteomic data highlights that exposure to the mixture increased oxidative stress, altered iron metabolism and impaired coagulation capacity. Additionally, depletion of several mini-chromosome maintenance components, in combination with depletion of several intermediate filaments and microtubules, among alevins exposed to the mixture, suggests compromised cellular integrity and reduced rate of mitosis, whereby affecting heart growth and development. Furthermore, the combination of proteomic and metabolomic data indicates altered energy metabolism, as per amino acid catabolism among mixture exposed alevins; plausibly compensatory mechanisms as to counteract reduced absorption and consumption of yolk. When considered as a whole, proteomic and metabolomic data, in relation to apical effects on the whole organism, provides additional insight into PAH toxicity and the effects of exposure on heart structure and molecular processes.


Assuntos
Oncorhynchus mykiss , Hidrocarbonetos Policíclicos Aromáticos , Animais , Fluorenos , Metaboloma , Oncorhynchus mykiss/metabolismo , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Proteoma/metabolismo , Proteômica
12.
Front Plant Sci ; 13: 1060804, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726681

RESUMO

Proanthocyanidins (PAs) are polymeric phenolic compounds found in plants and used in many industrial applications. Despite strong evidence of herbivore and pathogen resistance-related properties of PAs, their in planta function is not fully understood. Determining the location and dynamics of PAs in plant tissues and cellular compartments is crucial to understand their mode of action. Such an approach requires microscopic localization with fluorescent dyes that specifically bind to PAs. Such dyes have hitherto been lacking. Here, we show that 4-dimethylaminocinnamaldehyde (DMACA) can be used as a PA-specific fluorescent dye that allows localization of PAs at high resolution in cell walls and inside cells using confocal microscopy, revealing features of previously unreported wall-bound PAs. We demonstrate several novel usages of DMACA as a fluorophore by taking advantage of its double staining compatibility with other fluorescent dyes. We illustrate the use of the dye alone and its co-localization with cell wall polymers in different Populus root tissues. The easy-to-use fluorescent staining method, together with its high photostability and compatibility with other fluorogenic dyes, makes DMACA a valuable tool for uncovering the biological function of PAs at a cellular level in plant tissues. DMACA can also be used in other plant tissues than roots, however care needs to be taken when tissues contain compounds that autofluoresce in the red spectral region which can be confounded with the PA-specific DMACA signal.

13.
Front Plant Sci ; 11: 194, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180786

RESUMO

Rcd1 (radical-induced cell death1) is an Arabidopsis thaliana mutant, which exhibits high tolerance to paraquat [methyl viologen (MV)], herbicide that interrupts photosynthetic electron transport chain causing the formation of superoxide and inhibiting NADPH production in the chloroplast. To understand the biochemical mechanisms of MV-resistance and the role of RCD1 in oxidative stress responses, we performed metabolite profiling of wild type (Col-0) and rcd1 plants in light, after MV exposure and after prolonged darkness. The function of RCD1 has been extensively studied at transcriptomic and biochemical level, but comprehensive metabolite profiling of rcd1 mutant has not been conducted until now. The mutant plants exhibited very different metabolic features from the wild type under light conditions implying enhanced glycolytic activity, altered nitrogen and nucleotide metabolism. In light conditions, superoxide production was elevated in rcd1, but no metabolic markers of oxidative stress were detected. Elevated senescence-associated metabolite marker levels in rcd1 at early developmental stage were in line with its early-senescing phenotype and possible mitochondrial dysfunction. After MV exposure, a marked decline in the levels of glycolytic and TCA cycle intermediates in Col-0 suggested severe plastidic oxidative stress and inhibition of photosynthesis and respiration, whereas in rcd1 the results indicated sustained photosynthesis and respiration and induction of energy salvaging pathways. The accumulation of oxidative stress markers in both plant lines indicated that MV-resistance in rcd1 derived from the altered regulation of cellular metabolism and not from the restricted delivery of MV into the cells or chloroplasts. Considering the evidence from metabolomic, transcriptomic and biochemical studies, we propose that RCD1 has a negative effect on reductive metabolism and rerouting of the energy production pathways. Thus, the altered, highly active reductive metabolism, energy salvaging pathways and redox transfer between cellular compartments in rcd1 could be sufficient to avoid the negative effects of MV-induced toxicity.

14.
Sci Total Environ ; 746: 141161, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32750582

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are global contaminants of concern. Despite several decades of research, their mechanisms of toxicity are not very well understood. Early life stages of fish are particularly sensitive with the developing cardiac tissue being a main target of PAHs toxicity. The mechanisms of cardiotoxicity of the three widespread model polycyclic aromatic hydrocarbons (PAHs) retene, pyrene and phenanthrene were explored in rainbow trout (Oncorhynchus mykiss) early life stages. Newly hatched larvae were exposed to sublethal doses of each individual PAH causing no detectable morphometric alterations. Changes in the cardiac proteome and metabolome were assessed after 7 or 14 days of exposure to each PAH. Phase I and II enzymes regulated by the aryl hydrocarbon receptor were significantly induced by all PAHs, with retene being the most potent compound. Retene significantly altered the level of several proteins involved in key cardiac functions such as muscle contraction, cellular tight junctions or calcium homeostasis. Those findings were quite consistent with previous reports regarding the effects of retene on the cardiac transcriptome. Significant changes in proteins linked to iron and heme metabolism were observed following exposure to pyrene. While phenanthrene also altered the levels of several proteins in the cardiac tissue, no clear mechanisms or pathways could be highlighted. Due to high variability between samples, very few significant changes were detected in the cardiac metabolome overall. Slight but significant changes were still observed for pyrene and phenanthrene, suggesting possible effects on several energetic or signaling pathways. This study shows that early exposure to different PAHs can alter the expression of key proteins involved in the cardiac function, which could potentially affect negatively the fitness of the larvae and later of the juvenile fish.


Assuntos
Oncorhynchus mykiss , Fenantrenos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Animais , Larva , Metabolômica , Proteômica , Pirenos/toxicidade
15.
Tree Physiol ; 37(9): 1166-1181, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28460081

RESUMO

Cuticular wax layer is the first barrier against the outside environment and the first defense encountered by herbivores and pathogens. The effects of environmental factors on cuticular chemistry, and on the formation of glandular trichomes that account for the storage and secretion of lipophilic compounds to the leaf surface are poorly understood. Low vapor pressure deficit (VPD) has shown to reduce the nitrogen (N) status of plants. Thus, we studied the effects of elevated air humidity, indicated as VPD, and the effect of N fertilization on cuticular waxes and glandular trichome density in silver birch (Betula pendula Roth). Experiments were carried out in growth chambers with juvenile plants and in a long-term field experiment with older trees. Low VPD reduced the glandular trichome density in both experiments, in chamber and in field. The contents of the major triterpenoid and flavonoid aglycones correlated positively with glandular trichome density, which supports the role of trichomes in the exudation of secondary compounds to the leaf surface. A closer examination of the cuticular wax chemistry in the chamber experiment revealed that low VPD and N supply affected the composition of cuticular waxes, but not the total wax content. The deposition of different wax compounds followed a co-ordinated pattern in birch leaves, but different compound groups varied in their responses to N fertilization and low VPD. Low VPD reduced the hydrophobicity of cuticular waxes, as demonstrated by lower alkane content and less hydrophobic flavonoid profile in low VPD than in high VPD. Reduced hydrophobicity of the wax layer is presumed to increase leaf wettability. Together with reduced trichome density in low VPD it may enhance the susceptibility of trees to fungal pathogens and herbivores. High N supply under low VPD reduced the effect of low VPD on the cuticular wax composition. Total fatty acid content and the expression of ß-amyrin synthase were lower under high N supply than under moderate N supply irrespective of VPD treatment. Nitrogen availability and decreasing VPD will modify leaf surface properties in silver birch and thereby affect tree defence against abiotic and biotic stress factors that emerge under climate change.


Assuntos
Betula/fisiologia , Folhas de Planta/química , Tricomas/fisiologia , Pressão de Vapor , Ceras/química , Mudança Climática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA