Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37110066

RESUMO

The oxygen reduction reaction (ORR) activity of a Cu-doped Ba0.5Sr0.5FeO3-δ (Ba0.5Sr0.5Fe1-xCuxO3-δ, BSFCux, x = 0, 0.05, 0.10, 0.15) perovskite cathode was investigated in terms of oxygen vacancy formation and valence band structure. The BSFCux (x = 0, 0.05, 0.10, 0.15) crystallized in a cubic perovskite structure (Pm3¯m). By thermogravimetric analysis and surface chemical analysis, it was confirmed that the concentration of oxygen vacancies in the lattice increased with Cu doping. The average oxidation state of B-site ions decreased from 3.583 (x = 0) to 3.210 (x = 0.15), and the valence band maximum shifted from -0.133 eV (x = 0) to -0.222 eV (x = 0.15). The electrical conductivity of BSFCux increased with temperature because of the thermally activated small polaron hopping mechanism showing a maximum value of 64.12 S cm-1 (x = 0.15) at 500 °C. The ASR value as an indicator of ORR activity decreased by 72.6% from 0.135 Ω cm2 (x = 0) to 0.037 Ω cm2 (x = 0.15) at 700 °C. The Cu doping increased oxygen vacancy concentration and electron concentration in the valence band to promote electron exchange with adsorbed oxygen, thereby improving ORR activity.

2.
Nanomaterials (Basel) ; 14(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38202537

RESUMO

The oxygen vacancy formation behavior and electrochemical and thermal properties of Ba0.5Sr0.5Fe1-xMnxO3-δ (BSFMnx, x = 0-0.15) cathode materials were investigated. For thermogravimetric analysis, the weight decreased from 1.98% (x = 0) to 1.81% (x = 0.15) in the 400-950 °C range, which was due to oxygen loss from the lattice. The average oxidation state of the B-site increased, the Oads/Olat ratio decreased, and the binding energy of the Olat peak increased with Mn doping. These results indicate that Mn doping increases the strength of the metal-oxygen bond and decreases the amount of oxygen vacancies in the lattice. The electrical conductivity of BSFMnx increased with the temperature due to the thermally activated small-polaron hopping mechanism showing a maximum value of 10.4 S cm-1 (x = 0.15) at 450 °C. The area-specific resistance of BSFMn0.15 was 0.14 Ω cm2 at 700 °C and the thermal expansion coefficient (TEC) gradually decreased to 12.7 × 10-6 K-1, which is similar to that of Ce0.8Sm0.2O2 (SDC) (12.2 × 10-6 K-1). Mn doping increased the metal-oxygen bonding energy, which reduced the oxygen reduction reaction activity but improved the electrical conductivity and thermal stability with SDC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA