Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
FASEB J ; : fj201800285, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29894669

RESUMO

Rheumatoid arthritis is a chronic inflammatory disease that leads to significant changes in metabolic activity. Succinate, an intermediate of the tricarboxylic acid cycle, has emerged as a metabolic mediator of the innate immune response. However, the involvement of succinate in the generation of the adaptive immune response and establishment of autoimmune response has not been addressed thus far. Here we demonstrated that the succinate-sensing receptor (Sucnr1/GPR91) plays a critical role in the development of immune-mediated arthritis. We found that Sucnr1 acts as a chemotactic gradient sensor that guides dendritic cells (DCs) into the lymph nodes, orchestrating the expansion of the T helper (Th)17-cell population and the development of experimental antigen-induced arthritis. Sucnr1-/- mice show reduced articular hyperalgesia, neutrophil infiltration and inflammatory cytokines in the joint, and reduced frequency of Th17 cells in draining lymph nodes. Adoptive transfer of wild-type (WT) DCs into Sucnr1-/- mice restored the development of arthritis. Moreover, DC-depleted mice transferred with Sucnr1-/- DCs developed less arthritis than mice transferred with WT DCs. In contrast, succinate given together with the immunization boosted the recruitment of DCs and the frequency of Th17 cells in draining lymph nodes, increasing arthritis severity. Therefore, the blockade of Sucnr1 may represent a novel therapeutic target of arthritis.-Saraiva, A. L., Veras, F. P., Peres, R. S., Talbot, J., de Lima, K. A., Luiz, J. P., Carballido, J. M., Cunha, T. M., Cunha, F. Q., Ryffel, B., Alves-Filho, J. C. Succinate receptor deficiency attenuates arthritis by reducing dendritic cell traffic and expansion of Th17 cells in the lymph nodes.

2.
Pain ; 161(8): 1730-1743, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32701834

RESUMO

The inflammatory/immune response at the site of peripheral nerve injury participates in the pathophysiology of neuropathic pain. Nevertheless, little is known about the local regulatory mechanisms underlying peripheral nerve injury that counteracts the development of pain. Here, we investigated the contribution of regulatory T (Treg) cells to the development of neuropathic pain by using a partial sciatic nerve ligation model in mice. We showed that Treg cells infiltrate and proliferate in the site of peripheral nerve injury. Local Treg cells suppressed the development of neuropathic pain mainly through the inhibition of the CD4 Th1 response. Treg cells also indirectly reduced neuronal damage and neuroinflammation at the level of the sensory ganglia. Finally, we identified IL-10 signaling as an intrinsic mechanism by which Treg cells counteract neuropathic pain development. These results revealed Treg cells as important inhibitory modulators of the immune response at the site of peripheral nerve injury that restrains the development of neuropathic pain. In conclusion, the boosting of Treg cell function/activity might be explored as a possible interventional approach to reduce neuropathic pain development after peripheral nerve damage.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Linfócitos T Reguladores , Animais , Hiperalgesia , Camundongos , Camundongos Endogâmicos C57BL , Traumatismos dos Nervos Periféricos/complicações , Nervo Isquiático , Células Th1
3.
Front Immunol ; 9: 962, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867945

RESUMO

The ST2 receptor is a member of the Toll/IL-1R superfamily and interleukin-33 (IL-33) is its agonist. Recently, it has been demonstrated that IL-33/ST2 axis plays key roles in inflammation and immune mediated diseases. Here, we investigated the effect of ST2 deficiency in Staphylococcus aureus-induced septic arthritis physiopathology. Synovial fluid samples from septic arthritis and osteoarthritis individuals were assessed regarding IL-33 and soluble (s) ST2 levels. The IL-33 levels in samples from synovial fluid were significantly increased, whereas no sST2 levels were detected in patients with septic arthritis when compared with osteoarthritis individuals. The intra-articular injection of 1 × 107 colony-forming unity/10 µl of S. aureus American Type Culture Collection 6538 in wild-type (WT) mice induced IL-33 and sST2 production with a profile resembling the observation in the synovial fluid of septic arthritis patients. Data using WT, and ST2 deficient (-/-) and interferon-γ (IFN-γ)-/- mice showed that ST2 deficiency shifts the immune balance toward a type 1 immune response that contributes to eliminating the infection due to enhanced microbicide effect via NO production by neutrophils and macrophages. In fact, the treatment of ST2-/- bone marrow-derived macrophage cells with anti-IFN-γ abrogates the beneficial phenotype in the absence of ST2, which confirms that ST2 deficiency leads to IFN-γ expression and boosts the bacterial killing activity of macrophages against S. aureus. In agreement, WT cells achieved similar immune response to ST2 deficiency by IFN-γ treatment. The present results unveil a previously unrecognized beneficial effect of ST2 deficiency in S. aureus-induced septic arthritis.


Assuntos
Artrite Infecciosa/imunologia , Artrite Infecciosa/microbiologia , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Infecções Estafilocócicas/imunologia , Líquido Sinovial/imunologia , Animais , Feminino , Humanos , Interferon gama/genética , Interferon gama/imunologia , Interleucina-33/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoartrite do Joelho/imunologia , Staphylococcus aureus
4.
Arthritis Res Ther ; 20(1): 119, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884199

RESUMO

BACKGROUND: Epidemiologic studies have highlighted the association of environmental factors with the development and progression of autoimmune and chronic inflammatory diseases. Among the environmental factors, smoking has been associated with increased susceptibility and poor prognosis in rheumatoid arthritis (RA). However, the immune and molecular mechanism of smoking-induced arthritis aggravation remains unclear. The transcription factor aryl hydrocarbon receptor (AHR) regulates the generation of Th17 cells, CD4 T cells linked the development of autoimmune diseases. AHR is activated by organic compounds including polycyclic aromatic hydrocarbons (PAHs), which are environmental pollutants that are also present in cigarette smoke. In this study, we investigated the role of AHR activation in the aggravation of experiment arthritis induced by exposure to cigarette smoke. METHODS: Mice were exposed to cigarette smoke during the developmental phase of antigen-induced arthritis and collagen-induced arthritis to evaluate the effects of smoking on disease development. Aggravation of articular inflammation was assessed by measuring neutrophil migration to the joints, increase in articular hyperalgesia and changes in the frequencies of Th17 cells. In vitro studies were performed to evaluate the direct effects of cigarette smoke and PAH on Th17 differentiation. We also used mice genetically deficient for AHR (Ahr KO) and IL-17Ra (Il17ra KO) to determine the in vivo mechanism of smoking-induced arthritis aggravation. RESULTS: We found that smoking induces arthritis aggravation and increase in the frequencies of Th17 cells. The absence of IL-17 signaling (Il17ra KO) conferred protection to smoking-induced arthritis aggravation. Moreover, in vitro experiments showed that cigarette smoke can directly increase Th17 differentiation of T cells by inducing AHR activation. Indeed, Ahr KO mice were protected from cigarette smoke-induced arthritis aggravation and did not display increase in TH17 frequencies, suggesting that AHR activation is an important mechanism for cigarette smoke effects on arthritis. Finally, we demonstrate that PAHs are also able to induce arthritis aggravation. CONCLUSIONS: Our data demonstrate that the disease-exacerbating effects of cigarette smoking are AHR dependent and environmental pollutants with AHR agonist activity can induce arthritis aggravation by directly enhancing Th17 cell development.


Assuntos
Artrite Experimental/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Fumaça/efeitos adversos , Células Th17/metabolismo , Animais , Artrite Experimental/etiologia , Artrite Experimental/genética , Compostos Azo/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Pirazóis/farmacologia , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Receptores de Hidrocarboneto Arílico/genética , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Nicotiana/química
5.
Stem Cell Res Ther ; 7(1): 92, 2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27406064

RESUMO

BACKGROUND: Bone marrow multipotent mesenchymal stromal cells (MSCs) are a diverse subset of precursors that contribute to the homeostasis of the hematopoietic niche. MSCs can be isolated and expanded in vitro and have unique immunomodulatory and regenerative properties that make them attractive for the treatment of autoimmune diseases, including type 1 diabetes (T1D). Whether autologous or allogeneic MSCs are more suitable for therapeutic purposes has not yet been established. While autologous MSCs may present abnormal function, allogeneic cells may be recognized and rejected by the host immune system. Thus, studies that investigate biological characteristics of MSCs isolated from T1D patients are essential to guide future clinical applications. METHODS: Bone marrow-derived MSCs from recently diagnosed type 1 diabetes patients (T1D-MSCs) were compared with those from healthy individuals (C-MSCs) for morphological and immunophenotypic characteristics and for differentiation potential. Bioinformatics approaches allowed us to match absolute and differential gene expression of several adhesion molecules, immune mediators, growth factors, and their receptors involved with hematopoietic support and immunomodulatory properties of MSCs. Finally, the differentially expressed genes were collated for functional pathway enrichment analysis. RESULTS: T1D-MSCs and C-MSCs were similar for morphology, immunophenotype, and differentiation potential. Our absolute gene expression results supported previous literature reports, while also detecting new potential molecules related to bone marrow-derived MSC functions. T1D-MSCs showed intrinsic abnormalities in mRNA expression, including the immunomodulatory molecules VCAM-1, CXCL12, HGF, and CCL2. Pathway analyses revealed activation of sympathetic nervous system and JAK STAT signaling in T1D-MSCs. CONCLUSIONS: Collectively, our results indicate that MSCs isolated from T1D patients present intrinsic transcriptional alterations that may affect their therapeutic potential. However, the implications of these abnormalities in T1D development as well as in the therapeutic efficacy of autologous MSCs require further investigation.


Assuntos
Células da Medula Óssea/metabolismo , Diabetes Mellitus Tipo 1/genética , Células-Tronco Mesenquimais/metabolismo , RNA Mensageiro/genética , Transcriptoma , Adolescente , Adulto , Células da Medula Óssea/patologia , Estudos de Casos e Controles , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Feminino , Perfilação da Expressão Gênica , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Masculino , Células-Tronco Mesenquimais/patologia , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA