Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell Endocrinol ; 553: 111689, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35690288

RESUMO

Tributyltin (TBT) is an endocrine disruptor used as a biocide in nautical paints. Even though many TBT effects in marine species are known, data in mammals are scarce, especially regarding the thyroid gland. The present study aimed to evaluate the effect of a subchronic exposure to TBT on thyroid oxidative stress of female Wistar rats. Rats received vehicle (control group), 200 or 1000 ng TBT/kg body weight/day for 40 days. After euthanasia, one part of the thyroids were collected in order to assess iodide uptake; activity and/or mRNA expression of thyroperoxidase (TPO) and dual oxidases (DUOXs); activity and/or mRNA expression of catalase, glutathione peroxidase, superoxide dismutase and NADPH oxidase 4 (CAT, GPx, SOD and NOX4); 4-hydroxynonenal (4-HNE) expression and total thiol groups levels; and mRNA expression of estrogen receptors alpha and beta (ERα and ERß). The remaining part of the thyroid was processed for morphological analysis of estrogen receptor alpha (ERα) and for collagen deposition. Iodide uptake was not changed with treatments. TPO activity and expression were increased in the TBT1000 group (259.81% and 95.17%). The activity, but not mRNA, of CAT (17.36% TBT200; 27.10% TBT1000) and GPx (29.24% TBT200; 28.97% TBT1000) were decreased by TBT. SOD and NADPH oxidase activity, as well as thiol group and 4-HNE levels remained unchanged. Interstitial collagen deposition increased in the TBT200 group (39.54%). The mRNA expression of ERα increased in TBT-treated rats (44.87% TBT200; 36.43% TBT1000), while protein expression was increased but not reaching significance (TBT1000, p = 0.056) by TBT. Therefore, our results show that TBT increases TPO expression and reduces antioxidant enzyme activities in the thyroid gland leading to oxidative stress. Some of these effects could be mediated by the ERα pathway.


Assuntos
Disruptores Endócrinos , Compostos de Trialquitina , Animais , Colágeno/metabolismo , Disruptores Endócrinos/toxicidade , Receptor alfa de Estrogênio/metabolismo , Feminino , Iodetos/metabolismo , Mamíferos/metabolismo , Oxirredução , Ratos , Ratos Wistar , Compostos de Sulfidrila/metabolismo , Superóxido Dismutase/metabolismo , Glândula Tireoide/metabolismo , Compostos de Trialquitina/toxicidade
2.
Antioxidants (Basel) ; 11(9)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36139762

RESUMO

Exercise has beneficial effects on energy balance and also improves metabolic health independently of weight loss. Adipose tissue function is a critical denominator of a healthy metabolism but the adaptation of adipocytes in response to exercise is insufficiently well understood. We have previously shown that one aerobic exercise session was associated with increased expression of antioxidant and cytoprotective genes in white adipose tissue (WAT). In the present study, we evaluate the chronic effects of physical exercise on WAT redox homeostasis and mitochondrial function. Adult male Wistar rats were separated into two groups: a control group that did not exercise and a group that performed running exercise sessions on a treadmill for 30 min, 5 days per week for 9 weeks. Reactive oxygen species (ROS) generation, antioxidant enzyme activities, mitochondrial function, markers of oxidative stress and inflammation, and proteins related to DNA damage response were analyzed. In WAT from the exercise group, we found higher mitochondrial respiration in states I, II, and III of Complex I and Complex II, followed by an increase in ATP production, and the ROS/ATP ratio when compared to tissues from control rats. Regarding redox homeostasis, NADPH oxidase activity, protein carbonylation, and lipid peroxidation levels were lower in WAT from the exercise group when compared to control tissues. Moreover, antioxidant enzymatic activity, reduced glutathione/oxidized glutathione ratio, and total nuclear factor erythroid-2, like-2 (NFE2L2/NRF2) protein levels were higher in the exercise group compared to control. Finally, we found that exercise reduced the phosphorylation levels of H2AX histone (γH2AX), a central protein that contributes to genome stability through the signaling of DNA damage. In conclusion, our results show that chronic exercise modulates redox homeostasis in WAT, improving antioxidant capacity, and mitochondrial function. This hormetic remodeling of adipocyte redox balance points to improved adipocyte health and seems to be directly associated with the beneficial effects of exercise.

3.
Oxid Med Cell Longev ; 2021: 4593496, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33603946

RESUMO

Physical exercise is characterized by an increase in physical and metabolic demand in face of physical stress. It is reported that a single exercise session induces physiological responses through redox signaling to increase cellular function and energy support in diverse organs. However, little is known about the effect of a single bout of exercise on the redox homeostasis and cytoprotective gene expression of white adipose tissue (WAT). Thus, we aimed at evaluating the effects of acute aerobic exercise on WAT redox homeostasis, mitochondrial metabolism, and cytoprotective genic response. Male Wistar rats were submitted to a single moderate-high running session (treadmill) and were divided into five groups: control (CTRL, without exercise), and euthanized immediately (0 h), 30 min, 1 hour, or 2 hours after the end of the exercise session. NADPH oxidase activity was higher in 0 h and 30 min groups when compared to CTRL group. Extramitochondrial ROS production was higher in 0 h group in comparison to CTRL and 2 h groups. Mitochondrial respiration in phosphorylative state increased in 0 h group when compared to CTRL, 30 min, 1, and 2 h groups. On the other hand, mitochondrial ATP production was lower in 0 h in comparison to 30 min group, increasing in 1 and 2 h groups when compared to CTRL and 0 h groups. CAT activity was lower in all exercised groups when compared to CTRL. Regarding oxidative stress biomarkers, we observed a decrease in reduced thiol content in 0 h group compared to CTRL and 2 h groups, and higher levels of protein carbonylation in 0 and 30 min groups in comparison to the other groups. The levels returned to basal condition in 2 h group. Furthermore, aerobic exercise increased NRF2, GPX2, HMOX1, SOD1, and CAT mRNA levels. Taken together, our results suggest that one session of aerobic exercise can induce a transient prooxidative state in WAT, followed by an increase in antioxidant and cytoprotective gene expression.


Assuntos
Tecido Adiposo Branco/metabolismo , Homeostase , Mitocôndrias/metabolismo , Condicionamento Físico Animal , Trifosfato de Adenosina/biossíntese , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Respiração Celular/genética , Regulação da Expressão Gênica , Ácido Láctico/sangue , Masculino , NADPH Oxidases/metabolismo , Oxirredução , Estresse Oxidativo/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Espaço Retroperitoneal/fisiologia
4.
Environ Pollut ; 274: 115889, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33223335

RESUMO

Exposure to heavy metals, such as lead, is a global public health problem. Lead has a long historic relation to several adverse health conditions and was recently classified as an endocrine disruptor. The aim of this study was to investigate the effects of subacute exposure to lead on the thyroid gland function. Adult male and female Wistar rats received a lead acetate solution containing 10 or 25 mg/kg, by gavage, three times a week, for 14 days. One week later, behavioral testing showed no alterations in anxiety and motor-exploratory parameters, as evaluated by Open-Field and Plus-Maze Tests, but impairment in learning and memory was found in the male 25 mg/kg lead-treated group and in both female lead-treated groups, as evaluated by the Inhibitory Avoidance Test. After one week, serum levels of tT3 were reduced in the 25 mg/kg female group and in the 10 mg∕ kg male group. However, tT4 levels were increased in the 25 mg/kg male group and in both female treated groups. TSH levels did not change and lead serum levels were undetectable. Morphologic alterations were observed in the thyroid gland, including abnormal thyroid parenchyma follicles of different sizes, epithelial stratification and vacuolization of follicular cells, decrease in colloid eosinophilia and vascular congestion, accompanied by morphometric alterations. An increase in collagen deposition was also observed. No differences were observed in TPO activity or protein expression, H2O2 generation by NADPH oxidases or hepatic D1 mRNA expression. However, thyroid NIS protein expression was considerably decreased in the male and female lead-treated groups, while TSHr expression was decreased in the 25 mg/kg female lead-treated group. These findings demonstrated that subacute exposure to lead acetate disrupts thyroid gland function in both sexes, leading to morphophysiological impairment and to changes in learning and memory abilities.


Assuntos
Chumbo , Glândula Tireoide , Animais , Feminino , Peróxido de Hidrogênio , Chumbo/toxicidade , Fígado , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA