Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 89(6): 4067-4073, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38391391

RESUMO

We describe herein an N-heterocyclic-carbene-catalyzed atroposelective synthesis of axially chiral diaryl ethers. Through a sequentially enantioselective desymmetric process and a kinetic resolution process, the products could be constructed in good yields with excellent enantiopurities. Both alcohols and phenols were compatible with this catalytic system. The axially chiral carboxylic acids derived from the esters were proven to be potential chiral ligands for asymmetric synthesis, for example, Rh(III)-catalyzed enantioselective C-H functionalization.

2.
J Environ Manage ; 354: 120406, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38373376

RESUMO

Mitigating the adverse effects of stressful environments on crops and promoting plant recovery in contaminated sites are critical to agricultural development and environmental remediation. Iron-based nanomaterials (Fe NMs) can be used as environmentally friendly nano-fertilizer and as a means of ecological remediation. A meta-analysis was conducted on 58 independent studies from around the world to evaluate the effects of Fe NMs on plant development and antioxidant defense systems in stressful environments. The application of Fe NMs significantly enhanced plant biomass (mean = 25%, CI = 20%-30%), while promoting antioxidant enzyme activity (mean = 14%, CI = 10%-18%) and increasing antioxidant metabolite content (mean = 10%, CI = 6%-14%), reducing plant oxidative stress (mean = -15%, CI = -20%∼-10%), and alleviating the toxic effects of stressful environments. The observed response was dependent on a number of factors, which were ranked in terms of a Random Forest Importance Analysis. Plant species was the most significant factor, followed by Fe NM particle size, duration of application, dose level, and Fe NM type. The meta-analysis has demonstrated the potential of Fe NMs in achieving sustainable agriculture and the future development of phytoremediation.


Assuntos
Ferro , Nanoestruturas , Antioxidantes , Agricultura , Produtos Agrícolas
3.
Small ; 19(46): e2303876, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37469229

RESUMO

Inadequate photo-generated charge separation, migration, and utilization efficiency limit the photocatalytic efficiency. Herein, a MoS2 /MIL-53(Fe) photocatalyst/activator with the S-scheme heterojunction structure is designed and the charge migration behavior is modulated by the internal electric field (IEF). The IEF intensity is enhanced to 40 mV by modulating band bending potential and the depletion layer length of MoS2 . The photo-generated electron migration process is boosted by constructing the electron migration bridge (Fe-O-S) and modulating the IEF as the driving force, confirmed by the density functional theory calculation. Compared with the pristine materials, the photocurrent density of MoS2 /MIL-53(Fe) is significantly enhanced 27.5 times. Contributed by the visible-light-driven cooperative catalytic degradation and the high-efficiency direct photo-generated electron reduction dichlorination process, satisfactory chlorinated antibiotics removal and detoxification performances are achieved. This study opens up new insights into the application of heterojunctions in photocatalytic activation of PDS in environmental remediation.

4.
J Environ Manage ; 325(Pt A): 116614, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36419293

RESUMO

Fertile and uncontaminated soil with appropriate pH is crucial in terms of the agricultural sustainable development. Herein, a compound soil conditioner containing chitosan modified straw biochar (CBC), kitchen waste compost product-derived humic substance (HS), NPK compound fertiliser (NPK-CF) was prepared to simultaneously adjust acidic soil pH, improve fertility, and immobilize heavy metal. The results exhibited that the best Pb and NH4+ adsorption performance was obtained in CBC with chitosan:biochar of 1:5. Then, the acid soil pH was improved from 5.03 to 6.66 in the presence of CBC/HS (5:5) with 3% addition weight (the mass ratio of conditioner to soil). Meanwhile, compared with the control, the contents of organic matter, available nitrogen, and available phosphorus significantly increased by 52.4%, 92.6%, and 136.3%, respectively. Moreover, Pb was highly efficient immobilised by CBC, and the concentration of Pb in the soil was decreased by 55.2%. The optimal growth trend of ryegrass was obtained in the presence of 3% addition weight (the mass ratio of conditioner to soil) CBC/HS (CBC:HS = 5:5) combined with 60% of the recommended NPK-CF application weight, which was mainly contributed by the improvement of the soil microbial abundance and community structure diversity. The addition of CBC/HS could effectively reduce the addition of NPK-CF and contribute to simultaneous controlling nitrogen loss, releasing phosphorus, immobilising Pb, adjusting pH, improving soil quality and controlling nonpoint pollution.


Assuntos
Quitosana , Metais Pesados , Poluentes do Solo , Solo/química , Fertilizantes , Substâncias Húmicas , Poluentes do Solo/análise , Chumbo , Metais Pesados/química , Fósforo , Nitrogênio
5.
J Environ Manage ; 347: 119117, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37806271

RESUMO

A comprehensive assessment of the heavy metal system in the rehabilitated saline-alkali land holds significant importance, as the in-situ remediation process utilizing amendments substantially alters the initial physicochemical properties of the soil, which could lead to the migration or reactivation of previously stabilized heavy metals. In this context, the present study aims to evaluate the heavy metal content and health risk within the improved saline-alkali soil-plant system. Moreover, a comprehensive evaluation based on the TOPSIS-RSR method is carried out to accurately gauge the soil health status. The findings indicate that the modification process has an impact on the concentrations of heavy metals in the soil and crops, causing either an increase or decrease. However, the level of heavy metal pollution in the improved saline-alkali soil and rape remains within safe limits. The results of the migration of heavy metals after amendment application indicated that the migration of heavy metals in the soil was influenced by the properties of the heavy metals, the composition of the amendment, and leaching. Furthermore, the total non-carcinogenic hazard quotients in the soil and rape were within the safe threshold for all populations. The findings provided novel insights into the status and risk assessment of the pollution of improved saline-alkali soil.


Assuntos
Metais Pesados , Poluentes do Solo , Poluentes do Solo/análise , Metais Pesados/química , Solo , Poluição Ambiental/análise , Produtos Agrícolas , Medição de Risco , Monitoramento Ambiental , China
6.
Molecules ; 28(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36838784

RESUMO

With the widespread applications of manufactured nanoparticles (NPs), there are increasing concerns about their potential adverse effects on the environment and living systems. Many studies demonstrated that NPs could significantly affect the growth and development of crop plants. However, knowledge regarding the impacts of NPs on crop quality is rather limited. In this study, the effects of CeO2 NPs (25, 75, and 225 mg Ce/kg) and CeCl3 (25 mg Ce/kg) on the nutritional components of soil-cultivated corn and soybean plants were evaluated. Both treatments tended to decrease the dry weight of grain per plant, while only 225 mg/kg CeO2 NPs on soybean and CeCl3 on corn showed statistical significance compared with the respective control. CeO2 NPs at 225 mg/kg significantly decreased the content of starch in the corn kernels by 18.2% but increased total phenols in soybean seeds by 18.4%. Neither CeO2 NPs nor CeCl3 significantly affected the contents of minerals in corn kernels except for Zn. However, in the case of soybean, the two treatments tended to decrease the contents of P, Zn, Mn, and Mo but increase the content of S. Overall, the results suggest that CeO2 NPs and Ce3+ ions showed similar but not identical effects on corn and soybean plants. CeO2 NPs affect the nutritional quality of crop plants in a species-dependent manner.


Assuntos
Cério , Nanopartículas Metálicas , Nanopartículas , Glycine max , Zea mays , Cério/farmacologia , Valor Nutritivo
7.
Angew Chem Int Ed Engl ; 62(30): e202305518, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37227146

RESUMO

Hydrofunctionalization of alkynes is one of the most efficient ways to access axially chiral styrenes with open-chained olefins. While great advances have been achieved for 1-alkynylnaphthalen-2-ols and analogues, atroposelective hydrofunctionalization of unactivated internal alkynes lags. Herein we reported a platinum-catalyzed atroposelective hydrosilylation of unactivated internal alkynes for the first time. With monodentate TADDOL-derived phosphonite L1 used as a chiral ligand, various axially chiral styrenes were achieved in excellent enantioselectivities with high E-selectivities. Control experiments showed that the NH-arylamide groups have significant effects on both the yields and enantioselectivities and could act as directing groups. The potential utilities of the products were shown by the transformations of the amide motifs of the products.

8.
Angew Chem Int Ed Engl ; 62(44): e202311540, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37667513

RESUMO

We report herein a regiodivergent and enantioselective allyl addition to ketones with allenylsilanes through copper catalysis. With the combination of CuOAc, a Josiphos-type bidentate phosphine ligand and PhSiH3 , allyl addition to a variety of ketones furnishes branched products in excellent enantioselectivities. The regioselectivity is completely reversed by employing the P-stereogenic ligand BenzP*, affording the linear products with excellent enantioselectivities and good Z-selectivities. The linear Z-product could be converted to E-product via a catalytic geometric isomerization of the Z-alkene group. The silyl group in the products could provide a handle for downstream elaboration.

9.
Angew Chem Int Ed Engl ; 62(4): e202211988, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36426561

RESUMO

We herein disclose a mild and efficient access to chiral 3-azabicyclo[3.1.0]hexanes via a Pd-catalyzed asymmetric 5-exo-trig cyclization/cyclopropanation/carbonylation of 1,6-enynes. Various nucleophiles, such as alcohols, phenols, amines and water, are well compatible with the reaction system. This reaction forms three C-C bonds, two rings, two adjacent quaternary carbon stereocenters as well as one C-O/C-N bond with excellent regio- and enantioselectivities. The products could be further functionalized to generate a library of 3-azabicyclo[3.1.0]hexane frameworks.

10.
Angew Chem Int Ed Engl ; 62(51): e202313404, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37921257

RESUMO

Bicyclo[3.2.1]octadiene compounds and derivatives exist in a number of natural products and bioactive compounds. Nevertheless, catalytic enantioselective protocols for the synthesis of these skeletons have not been disclosed. Herein we reported a palladium-catalyzed asymmetric intramolecular alkene-alkyne coupling of alkyne-tethered cyclopentenes, affording a library of enantionenriched bicyclo[3.2.1]octadienes in excellent yields and enantioselectivities (mostly >99 % ee). Moreover, the products could undergo an unusual iodination-induced 1,2-acyl migration, forming iodinated bicyclo[3.2.1]octadienes with three vicinal stereocenters. The enone and isolated olefin motifs embedded in the products provide useful handles for downstream elaboration.

11.
J Am Chem Soc ; 144(25): 11364-11376, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35687857

RESUMO

Pd-catalyzed sequential hydroamination of readily available 1,3-enynes is reported. The redox-neutral process provides an efficient route to synthesize a broad scope of imidazolidinones, thiadiazolidines, and imidazolidines. Asymmetric sequential hydroamination generates a series of synthetically valuable, enantioenriched imidazolidinones. Mechanistic studies revealed that the transformation occurred via an intermolecular enyne hydroamination pathway to give an allene intermediate. Subsequent intramolecular hydroamination of the allene intermediate proceeded under the Curtin-Hammett principle to provide enantioenriched imidazolidinone products.


Assuntos
Imidazolidinas , Paládio , Aminação , Catálise , Estereoisomerismo
12.
J Pept Sci ; 28(7): e3389, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34937123

RESUMO

Aberrant activation of the Wnt signaling pathway has been identified in numerous types of cancer. One common feature of oncogenic Wnt regulation involves an increase in the cellular levels of ß-catenin due to interference with its constitutive ubiquitin-dependent degradation. Targeting ß-catenin has therefore emerged as an appealing approach for the treatment of Wnt-dependent cancers. Here, we report a strategy that employs multifunctional stapled peptides to recruit an E3 ubiquitin ligase to ß-catenin, thereby rescuing ß-catenin degradation by hijacking the endogenous ubiquitin-proteasome pathway. Specifically, we designed, synthesized, and evaluated a panel of multifunctional stapled peptides that have a ß-catenin binding moiety (StAx-35) covalently linked to a second stapled peptide moiety (SAH-p53-8), which is capable to interact with the E3 ubiquitin ligase MDM2. We found that in vitro these multifunctional peptides can recruit the MDM2 protein to ß-catenin and induce poly-ubiquitination on ß-catenin. In cellulo, treatment of the human colorectal cancer cell line SW480 with the multifunctional stapled peptides showed dose-dependent degradation of endogenous ß-catenin levels. In addition, a luciferase reporter assay showed that the multifunctional stapled peptides can suppress ß-catenin-mediated gene expression via the Wnt signaling pathway. Therefore, these multifunctional stapled peptides provide a unique research tool for examining the Wnt signaling pathway by targeted knockdown of ß-catenin at the protein level, and may serve as leads for potential drug candidates in the treatment of Wnt-dependent cancers.


Assuntos
Via de Sinalização Wnt , beta Catenina , Humanos , Peptídeos/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Ubiquitinas/genética , Ubiquitinas/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
13.
Ecotoxicol Environ Saf ; 213: 112044, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33601171

RESUMO

Due to the extensive use and pseudo-persistence of pharmaceuticals and personal care products (PPCPs), they are frequently detected in the aqueous environment, which has attracted global attention. In this paper, accumulation data of 81 PPCPs in surface water or sediment in China were reported. In addition, 20 kinds of PPCPs with high frequency were selected and their ecological risk assessment was conducted by risk quotient (RQs). The results indicated that the concentration detected in surface water and sediment ranged from ng/L (ng/kg) to µg/L (µg/kg) in China, which was similar to concentrations reported globally. However, contamination by certain PPCPs, such as caffeine, oxytetracycline, and erythromycin, was relatively high with a maximum concentration of more than 2000 ng/L in surface water. RQs revealed that 14 kinds of PPCPs pose no significant risk or low risk to aquatic organisms, while 6 kinds of PPCPs pose a high risk. Additionally, the pollution characteristics of PPCPs in each watershed are different. The Haihe River watershed and the central and lower Yangtze River were the regions of high concern for erythromycin. Triclosan has potential risks in the Pearl River watershed. This study determined the occurrence and risk of PPCPs in China in the past decade, providing a scientific basis for PPCPs pollution control and risk prevention.


Assuntos
Cosméticos/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Organismos Aquáticos , China , Preparações Farmacêuticas , Medição de Risco , Rios , Triclosan , Água
14.
Ecotoxicol Environ Saf ; 208: 111552, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396093

RESUMO

A novel material that nano zero valent iron (nZVI) loaded on biochar with stable starch stabilization (nZVI/SS/BC) was synthesized and used for the removal of hexavalent chromium [Cr(VI)] in simulated wastewater. It was indicated that as the pyrolysis temperature of rice straw increased, the removal rate of Cr(VI) by nZVI/SS/BC first increased and then decreased. nZVI/SS/BC made from biochar pyrolyzed at 600 °C (nZVI/SS/BC600) had the highest removal efficiency and was suitable for a wide pH range (pH 2.1-10.0). The results showed that 99.67% of Cr(VI) was removed by nZVI/SS/BC600, an increase of 45.93% compared to the control group, which did not add soluble starch during synthesis. The pseudo-second-order model and the Langmuir model were more in line with reaction. The maximum adsorption capacity for Cr(VI) by nZVI/SS/BC600 was 122.86 mg·g-1. The properties of the material were analyzed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) mapping, Brunauer-Emmett-Teller (BET), Fourier-transform infrared (FTIR), and X-ray diffraction (XRD). The results showed that the nZVI particles were uniformly supported on the biochar, and the BET surface areas of nZVI/SS/BC was 40.4837 m2·g-1, an increase of 8.79 times compared with the control group. Mechanism studies showed that soluble starch reduced the formation of metal oxides, thereby improving the reducibility of the material, and co-precipitates were formed during the reaction. All results indicated that nZVI/SS/BC was a potential repair material that can effectively overcome the limitations of nZVI and achieve efficient and rapid repair of Cr(VI).


Assuntos
Carvão Vegetal/química , Cromo/química , Poluentes Químicos da Água/química , Adsorção , Ferro/química , Pirólise , Amido , Temperatura , Poluentes Químicos da Água/análise , Purificação da Água , Difração de Raios X
15.
Ecotoxicol Environ Saf ; 213: 112046, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33607337

RESUMO

Long-term retention and accumulation of heavy metals in rivers pose a great threat to the stability of ecosystems and human health. In this study, Beiyun River was taken as the example to quantitatively identify pollution sources and assess the pollution source-oriented health risk. A total of 8 heavy metals (Mn, Ni, Pb, Zn, As, Cr, Cd, and Cu) in Beiyun River were measured. Ordinary kriging (OK) and inverse distance weight (IDW) methods were used to predict the distribution of heavy metals. The results showed that the OK method is more accurate, and heavy metal pollution in the midstream and downstream is much more serious than that in the upstream. Principal component analysis-multiple linear regressions (PCA-MLR) and positive matrix factorization (PMF) methods were used to quantitatively identify pollution sources. The coefficient of determination (R2) of PMF is closer to 1, and the analyzed pollution source is more refined. Furthermore, the result of source identification was imported into the health risk assessment to calculate the hazard index (HI) and carcinogenic risk (CR) of various pollution sources. The results showed that the HI and CR of As and Ni to local residents were serious in the Beiyun River. Industrial activities (23.0%) are considered to be the largest contribution of heavy metals in Beiyun River, followed by traffic source (17%), agricultural source (16%), and atmospheric deposition (16%). The source-oriented risk assessment indicated that the largest contribution of HI and CR is agricultural source in the Beiyun River, followed by industrial activities. This study provides a "target" for the precise control of pollution sources, which is of great significance for improving the fine management of the water environment in the basin.


Assuntos
Monitoramento Ambiental , Metais Pesados/análise , Poluentes do Solo/análise , Agricultura , Carcinógenos/análise , China , Ecossistema , Poluição Ambiental/análise , Humanos , Indústrias , Medição de Risco , Rios , Análise Espacial
16.
Ecotoxicol Environ Saf ; 197: 110566, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32283408

RESUMO

To assess the effects of neonicotinoid insecticides on fish, juvenile Chinese rare minnows (Gobiocypris rarus) were exposed to 0.1, 0.5, or 2.0 mg/L neonicotinoid insecticides (imidacloprid, nitenpyram, and dinotefuran) for 60 days. The endpoints, including oxidative stress and DNA damage, were determined. The results of oxidative stress assays showed that SOD activities were significantly increased in the 2.0 mg/L imidacloprid and 0.5 mg/L nitenpyram and dinotefuran treatments (p < 0.05). CAT activity was significantly increased with 0.1 mg/L nitenpyram (p < 0.05), whereas it was significantly decreased in the 0.1 and 2.0 mg/L dinotefuran treatment groups (p < 0.05). Moreover, MDA content was significantly decreased in all imidacloprid treatments and in the 0.5 and 2.0 mg/L dinotefuran treatments (p < 0.05); however, it was significantly increased in the 0.1 mg/L nitenpyram treatment (p < 0.05). GSH content was significantly increased at all treatments except for the 0.5 mg/L dinotefuran treatment (p < 0.05). The transcript expression results showed that gstm mRNA expression was significantly inhibited by 0.5 and 2.0 mg/L imidacloprid, and gstp1 mRNA expression was significantly inhibited by all nitenpyram treatments (p < 0.05). In addition, ugt1a mRNA expression was significantly inhibited in the 0.5 mg/L nitenpyram treatment (p < 0.05). The results of the DNA damage assay showed that tail moments were significantly increased by the 2.0 mg/L imidacloprid treatment (p < 0.01), while tail DNA was significantly increased by 0.5 and 2.0 mg/L imidacloprid, 2.0 mg/L nitenpyram and all dinotefuran treatments (p < 0.01). Moreover, olive tail moments were significantly increased by the 0.5 and 2.0 mg/L imidacloprid and 2.0 mg/L dinotefuran treatments (p < 0.01). Therefore, our oxidative stress and DNA damage findings demonstrated that imidacloprid and nitenpyram could cause adverse effects on juvenile rare minnows.


Assuntos
Dano ao DNA , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Cyprinidae/genética , Cyprinidae/metabolismo , Estresse Oxidativo/genética , Transcrição Gênica/efeitos dos fármacos
17.
Ecotoxicol Environ Saf ; 188: 109902, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31704325

RESUMO

In this study, polyethylene glycol (PEG)-stabilized nano zero-valent iron (nZVI) supported by biochar (BC) (PEG-nZVI@BC) was prepared to remedy Cr(VI) with high efficiency. The morphology, functional groups, and crystalline structure of PEG-nZVI@BC composites were characterized, revealing that when PEG was added, a large number of -OH functional groups were introduced, and nZVI was effectively dispersed on the BC surface with a smaller particle size. The results of Cr(VI) remediation experiments showed Cr(VI) removal rate by PEG-nZVI@BC (97.38%) was much greater than that by BC-loaded nZVI (nZVI@BC) (51.73%). The pseudo second-order and Sips isotherm models provide the best simulation for Cr(VI) removal experimental data, respectively. The main remediation mechanism of Cr(VI) was reduction and co-precipitation of Cr-containing metal deposits onto PEG-nZVI@BC. Ecotoxicity assessment revealed PEG-nZVI@BC (1.00 g/L) has little influence on rice germination and growth, but resisted the toxicity of Cr(VI) to rice. The modified Community Bureau of Reference (BCR) sequential extraction showed pyrolysis could increase the percentage of oxidizable and residual Cr and diminish the environmental risk of Cr release from post-removal composites.


Assuntos
Carvão Vegetal/química , Cromo/isolamento & purificação , Ferro/química , Polietilenoglicóis/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Precipitação Química , Cromo/química , Recuperação e Remediação Ambiental , Oxirredução , Tamanho da Partícula , Poluentes Químicos da Água/química
18.
Molecules ; 25(1)2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31877736

RESUMO

Nanometer zero-valent iron (nZVI) has been widely used in the treatment of heavy metals such as hexavalent chromium (Cr(VI)). A novel composite of bead string-structured nZVI on modified activated carbon (nZVI-MAC) is prepared here, using polyethylene glycol as the stable dispersant rather than traditional ethanol during the loading process. The microstructure characterization shows that nZVI particles are loaded on MAC with a bead string structure in large quantity and stably due to the addition of hydroxyl functional groups on the surface by polyethylene glycol. Experiments on the treatment of Cr(VI) in wastewater show that the reaction process requires only 20 min to achieve equilibrium. The removal rate of Cr(VI) with a low concentration (80-100 mg/L) is over 99% and the maximum saturation removal capacity is up to 66 mg/g. The system converts Cr(VI) to trivalent chromium (Cr(III)) through an oxidation-reduction effect and forms an insoluble material with iron ions by coprecipitation, which is then adsorbed on the surface of the nZVI-MAC. The process conforms to the quasi-second order adsorption kinetics equation (mainly chemical adsorption process).


Assuntos
Carvão Vegetal/química , Cromo/análise , Ferro/química , Águas Residuárias/análise , Adsorção , Precipitação Química , Cromo/química , Nanopartículas Metálicas , Polietilenoglicóis/química
19.
Angew Chem Int Ed Engl ; 58(9): 2884-2888, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30664333

RESUMO

A palladium-catalyzed asymmetric reductive Heck reaction of unactivated aliphatic alkenes, with eliminable ß-hydrogen atoms, has been realized for the first time. A series of optically active bicyclo[3.2.1]octanes bearing chiral quaternary and tertiary carbon stereocenters were obtained in good yields with excellent enantioselectivities, exhibiting good functional-group tolerance and scalability. Moreover, deuterated optically active bicyclo[3.2.1]octanes were also obtained in high efficiency.

20.
Angew Chem Int Ed Engl ; 58(19): 6400-6404, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30815962

RESUMO

An efficient and divergent approach toward the synthesis of all four de-O-sulfonated sulfonium type α-glucosidase inhibitors, originally isolated from plants of genus Salacia, is reported for the first time. The key strategy features a coupling reaction between thiol derivatives and a diiodide counterpart. The newly designed thiol coupling partner presents high chemical stability, while the diiodide partner could be easily obtained with increased overall yields compared with conventional routes. The intermolecular nucleophilic substitution reaction followed by a diastereoselective intramolecular cyclization provided the target five-member sulfonium salt structure, which was connected in an α-orientation to a polyhydroxylated side-chain moiety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA