Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Med Internet Res ; 21(12): e14904, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31799938

RESUMO

BACKGROUND: Conventional diet assessment approaches such as the 24-hour self-reported recall are burdensome, suffer from recall bias, and are inaccurate in estimating energy intake. Wearable sensor technology, coupled with advanced algorithms, is increasingly showing promise in its ability to capture behaviors that provide useful information for estimating calorie and macronutrient intake. OBJECTIVE: This paper aimed to summarize current technological approaches to monitoring energy intake on the basis of expert opinion from a workshop panel and to make recommendations to advance technology and algorithms to improve estimation of energy expenditure. METHODS: A 1-day invitational workshop sponsored by the National Science Foundation was held at Northwestern University. A total of 30 participants, including population health researchers, engineers, and intervention developers, from 6 universities and the National Institutes of Health participated in a panel discussing the state of evidence with regard to monitoring calorie intake and eating behaviors. RESULTS: Calorie monitoring using technological approaches can be characterized into 3 domains: (1) image-based sensing (eg, wearable and smartphone-based cameras combined with machine learning algorithms); (2) eating action unit (EAU) sensors (eg, to measure feeding gesture and chewing rate); and (3) biochemical measures (eg, serum and plasma metabolite concentrations). We discussed how each domain functions, provided examples of promising solutions, and highlighted potential challenges and opportunities in each domain. Image-based sensor research requires improved ground truth (context and known information about the foods), accurate food image segmentation and recognition algorithms, and reliable methods of estimating portion size. EAU-based domain research is limited by the understanding of when their systems (device and inference algorithm) succeed and fail, need for privacy-protecting methods of capturing ground truth, and uncertainty in food categorization. Although an exciting novel technology, the challenges of biochemical sensing range from a lack of adaptability to environmental effects (eg, temperature change) and mechanical impact, instability of wearable sensor performance over time, and single-use design. CONCLUSIONS: Conventional approaches to calorie monitoring rely predominantly on self-reports. These approaches can gain contextual information from image-based and EAU-based domains that can map automatically captured food images to a food database and detect proxies that correlate with food volume and caloric intake. Although the continued development of advanced machine learning techniques will advance the accuracy of such wearables, biochemical sensing provides an electrochemical analysis of sweat using soft bioelectronics on human skin, enabling noninvasive measures of chemical compounds that provide insight into the digestive and endocrine systems. Future computing-based researchers should focus on reducing the burden of wearable sensors, aligning data across multiple devices, automating methods of data annotation, increasing rigor in studying system acceptability, increasing battery lifetime, and rigorously testing validity of the measure. Such research requires moving promising technological solutions from the controlled laboratory setting to the field.


Assuntos
Ingestão de Energia , Comportamento Alimentar , Dispositivos Eletrônicos Vestíveis , Algoritmos , Educação , Humanos , Smartphone , Telemedicina , Estados Unidos
2.
JMIR Cancer ; 6(2): e24137, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33156810

RESUMO

BACKGROUND: eHealth technologies have been found to facilitate health-promoting practices among cancer survivors with BMI in overweight or obese categories; however, little is known about their engagement with eHealth to promote weight management and facilitate patient-clinician communication. OBJECTIVE: The objective of this study was to determine whether eHealth use was associated with sociodemographic characteristics, as well as medical history and experiences (ie, patient-related factors) among cancer survivors with BMI in overweight or obese categories. METHODS: Data were analyzed from a nationally representative cross-sectional survey (National Cancer Institute's Health Information National Trends Survey). Latent class analysis was used to derive distinct classes among cancer survivors based on sociodemographic characteristics, medical attributes, and medical experiences. Logistic regression was used to examine whether class membership was associated with different eHealth practices. RESULTS: Three distinct classes of cancer survivors with BMI in overweight or obese categories emerged: younger with no comorbidities, younger with comorbidities, and older with comorbidities. Compared to the other classes, the younger with comorbidities class had the highest probability of identifying as female (73%) and Hispanic (46%) and feeling that clinicians did not address their concerns (75%). The older with comorbidities class was 6.5 times more likely than the younger with comorbidities class to share eHealth data with a clinician (odds ratio [OR] 6.53, 95% CI 1.08-39.43). In contrast, the younger with no comorbidities class had a higher likelihood of using a computer to look for health information (OR 1.93, 95% CI 1.10-3.38), using an electronic device to track progress toward a health-related goal (OR 2.02, 95% CI 1.08-3.79), and using the internet to watch health-related YouTube videos (OR 2.70, 95% CI 1.52-4.81) than the older with comorbidities class. CONCLUSIONS: Class membership was associated with different patterns of eHealth engagement, indicating the importance of tailored digital strategies for delivering effective care. Future eHealth weight loss interventions should investigate strategies to engage younger cancer survivors with comorbidities and address racial and ethnic disparities in eHealth use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA