Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686302

RESUMO

The pollution of heavy metals is extremely serious in China, including zinc (Zn), copper (Cu), lead (Pb), and cadmium (Cd). Heavy-metal-transporting ATPase (HMA) belongs to a subfamily of the P-ATPase family, which absorbs and transports Zn, Cu, Pb, and Cd in plants. Here, we describe a ZmHMA-encoding HMA family protein that positively regulates Cd and Zn tolerance. The real-time fluorescence quantification (RT-PCR) results revealed that ZmHMA3 had a high expression in B73, and the expression of ZmHMA3 was sensitive to Cd in yeast cells, which was related to Cd accumulation in yeast. Additionally, the Arabidopsis thaliana homologous mutants of AtHMA2 showed Cd sensitivity compared with WT. The overexpressing ZmHMA3 plants showed higher tolerance under Cd and Zn stresses than the wild type. The overexpression of ZmHMA3 led to higher Cd and Zn accumulation in tissues based on the subcellular distribution analysis. We propose that ZmHMA3 improves maize tolerance to Cd and Zn stresses by absorbing and transporting Cd and Zn ions. This study elucidates the gene function of the ZmHMA3 response to Cd and Zn stress and provides a reference for improving the characteristics of heavy metals enrichment in existing maize varieties and the plant remediation technology of heavy-metal-contaminated soil.


Assuntos
Arabidopsis , Metais Pesados , Zinco , Cádmio/toxicidade , Zea mays/genética , Adenosina Trifosfatases/genética , Chumbo , Saccharomyces cerevisiae , Metais Pesados/toxicidade , Arabidopsis/genética
2.
Plant J ; 108(1): 40-54, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34252236

RESUMO

Maize is an important crop worldwide, as well as a valuable model with vast genetic diversity. Accurate genome and annotation information for a wide range of inbred lines would provide valuable resources for crop improvement and pan-genome characterization. In this study, we generated a high-quality de novo genome assembly (contig N50 of 15.43 Mb) of the Chinese elite inbred line RP125 using Nanopore long-read sequencing and Hi-C scaffolding, which yield highly contiguous, chromosome-length scaffolds. Global comparison of the RP125 genome with those of B73, W22, and Mo17 revealed a large number of structural variations. To create new germplasm for maize research and crop improvement, we carried out an EMS mutagenesis screen on RP125. In total, we obtained 5818 independent M2 families, with 946 mutants showing heritable phenotypes. Taking advantage of the high-quality RP125 genome, we successfully cloned 10 mutants from the EMS library, including the novel kernel mutant qk1 (quekou: "missing a small part" in Chinese), which exhibited partial loss of endosperm and a starch accumulation defect. QK1 encodes a predicted metal tolerance protein, which is specifically required for Fe transport. Increased accumulation of Fe and reactive oxygen species as well as ferroptosis-like cell death were detected in qk1 endosperm. Our study provides the community with a high-quality genome sequence and a large collection of mutant germplasm.


Assuntos
Genoma de Planta/genética , Zea mays/genética , Produtos Agrícolas , Endosperma/genética , Endosperma/metabolismo , Endogamia , Mutação , Fenótipo , Melhoramento Vegetal , Banco de Sementes , Sementes/genética , Sementes/metabolismo , Amido/metabolismo , Zea mays/metabolismo
3.
Int J Mol Sci ; 23(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35055000

RESUMO

The cellulose of the plant cell wall indirectly affects the cell shape and straw stiffness of the plant. Here, the novel brittleness mutant brittle stalk-5 (bk-5) of the maize inbred line RP125 was characterized. We found that the mutant displayed brittleness of the stalk and even the whole plant, and that the brittleness phenotype existed during the whole growth period from germination to senescence. The compressive strength was reduced, the cell wall was thinner, and the cellulose content was decreased compared to that of the wild type. Genetic analysis and map-based cloning indicated that bk-5 was controlled by a single recessive nuclear gene and that it was located in a 90.2-Kb region on chromosome 3 that covers three open reading frames (ORFs). Sequence analysis revealed a single non-synonymous missense mutation, T-to-A, in the last exon of Zm00001d043477 (B73: version 4, named BK-5) that caused the 951th amino acid to go from leucine to histidine. BK-5 encodes a cellulose synthase catalytic subunit (CesA), which is involved with cellulose synthesis. We found that BK-5 was constitutively expressed in all tissues of the germinating stage and silking stage, and highly expressed in the leaf, auricula, and root of the silking stage and the 2-cm root and bud of the germinating stage. We found that BK-5 mainly localized to the Golgi apparatus, suggesting that the protein might move to the plasma membrane with the aid of Golgi in maize. According to RNA-seq data, bk-5 had more downregulated genes than upregulated genes, and many of the downregulated genes were enzymes and transcription factors related to cellulose, hemicellulose, and lignin biosynthesis of the secondary cell wall. The other differentially expressed genes were related to metabolic and cellular processes, and were significantly enriched in hormone signal transduction, starch and sucrose metabolism, and the plant-pathogen interaction pathway. Taken together, we propose that the mutation of gene BK-5 causes the brittle stalk phenotype and provides important insights into the regulatory mechanism of cellulose biosynthesis and cell wall development in maize.


Assuntos
Parede Celular/metabolismo , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Genes Recessivos , Proteínas de Plantas/genética , Zea mays/genética , Zea mays/metabolismo , Sequência de Aminoácidos , Parede Celular/química , Parede Celular/ultraestrutura , Clonagem Molecular , Técnicas de Silenciamento de Genes , Loci Gênicos , Especificidade de Órgãos , Fenótipo , Filogenia , Transporte Proteico , Análise de Sequência de DNA , Zea mays/classificação
4.
Plant J ; 97(5): 947-969, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30472798

RESUMO

Inorganic phosphorus (Pi) is an essential element in numerous metabolic reactions and signaling pathways, but the molecular details of these pathways remain largely unknown. In this study, metabolite profiles of maize (Zea mays L.) leaves and roots were compared between six low-Pi-sensitive lines and six low-Pi-tolerant lines under Pi-sufficient and Pi-deficient conditions to identify pathways and genes associated with the low-Pi stress response. Results showed that under Pi deprivation the concentrations of nucleic acids, organic acids and sugars were increased, but that the concentrations of phosphorylated metabolites, certain amino acids, lipid metabolites and nitrogenous compounds were decreased. The levels of secondary metabolites involved in plant immune reactions, including benzoxazinoids and flavonoids, were significantly different in plants grown under Pi-deficient conditions. Among them, the 11 most stable metabolites showed significant differences under low- and normal-Pi conditions based on the coefficient of variation (CV). Isoleucine and alanine were the most stable metabolites for the identification of Pi-sensitive and Pi-resistant maize inbred lines. With the significant correlation between morphological traits and metabolites, five low-Pi-responding consensus genes associated with morphological traits and simultaneously involved in metabolic pathways were mined by combining metabolites profiles and genome-wide association study (GWAS). The consensus genes induced by Pi deficiency in maize seedlings were also validated by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). Moreover, these genes were further validated in a recombinant inbred line (RIL) population, in which the glucose-6-phosphate-1-epimerase encoding gene mediated yield and correlated traits to phosphorus availability. Together, our results provide a framework for understanding the metabolic processes underlying Pi-deficient responses and give multiple insights into improving the efficiency of Pi use in maize.


Assuntos
Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Fósforo/deficiência , Proteínas de Plantas/metabolismo , Zea mays/fisiologia , Metabolômica , Fenótipo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plântula/genética , Plântula/fisiologia , Estresse Fisiológico , Zea mays/genética
5.
Mol Genet Genomics ; 295(2): 409-420, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31807910

RESUMO

Kernel weight in a unit volume is referred to as kernel test weight (KTW) that directly reflects maize (Zea mays L.) grain quality. In this study, an inter-mated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population and an association panel were used to identify loci responsible for KTW of maize across multiple environments. A total of 18 significant KTW-related single-nucleotide polymorphisms (SNPs) were identified using genome-wide association study (GWAS); they were closely linked to 12 candidate genes. In the IBM Syn10 DH population, linkage analysis detected 19 common quantitative trait loci (QTL), five of which were repeatedly detected among multiple environments. Several verified genes that regulate maize seed development were found in the confidence intervals of the mapped QTL and the LD regions of GWAS, such as ZmYUC1, BAP2, ZmTCRR-1, dek36 and ZmSWEET4c. Combined QTL mapping and GWAS identified one significant SNP that was co-identified in the both populations. Based on the co-localized SNP across the both populations, 17 candidate genes were identified. Of them, Zm00001d044075, Zm00001d044086, and Zm00001d044081 were further identified by candidate gene association study for KTW. Zm00001d044081 encodes homeobox-leucine zipper protein ATHB-4, which has been demonstrated to control apical embryo development in Arabidopsis. Our findings provided insights into the mechanism underlying maize KTW and contributed to the application of molecular-assisted selection of high KTW breeding in maize.


Assuntos
Estudo de Associação Genômica Ampla , Proteínas de Plantas/genética , Locos de Características Quantitativas/genética , Zea mays/genética , Arabidopsis/genética , Cruzamento , Mapeamento Cromossômico , Grão Comestível/genética , Estudos de Associação Genética , Ligação Genética , Genoma de Planta/genética , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
6.
Plant Biotechnol J ; 18(1): 207-221, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31199064

RESUMO

Kernel size-related traits are the most direct traits correlating with grain yield. The genetic basis of three kernel traits of maize, kernel length (KL), kernel width (KW) and kernel thickness (KT), was investigated in an association panel and a biparental population. A total of 21 single nucleotide polymorphisms (SNPs) were detected to be most significantly (P < 2.25 × 10-6 ) associated with these three traits in the association panel under four environments. Furthermore, 50 quantitative trait loci (QTL) controlling these traits were detected in seven environments in the intermated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population, of which eight were repetitively identified in at least three environments. Combining the two mapping populations revealed that 56 SNPs (P < 1 × 10-3 ) fell within 18 of the QTL confidence intervals. According to the top significant SNPs, stable-effect SNPs and the co-localized SNPs by association analysis and linkage mapping, a total of 73 candidate genes were identified, regulating seed development. Additionally, seven miRNAs were found to situate within the linkage disequilibrium (LD) regions of the co-localized SNPs, of which zma-miR164e was demonstrated to cleave the mRNAs of Arabidopsis CUC1, CUC2 and NAC6 in vitro. Overexpression of zma-miR164e resulted in the down-regulation of these genes above and the failure of seed formation in Arabidopsis pods, with the increased branch number. These findings provide insights into the mechanism of seed development and the improvement of molecular marker-assisted selection (MAS) for high-yield breeding in maize.


Assuntos
Mapeamento Cromossômico , Ligação Genética , Locos de Características Quantitativas , Sementes/crescimento & desenvolvimento , Zea mays/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Zea mays/crescimento & desenvolvimento
7.
Mol Genet Genomics ; 294(5): 1277-1288, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31139941

RESUMO

Stalk lodging severely limits the grain yield of maize (Zea mays L.). Mechanical stalk strength can be reflected by the traits of stalk diameter (SD), stalk bending strength (SBS), and lodging rind penetrometer resistance (RPR). To determine the genetic basis of maize stalk lodging, quantitative trait loci (QTLs) were mapped for these three traits using the IBM Syn10 DH population in three environments. The results indicated that there were strong genetic correlations among the three traits, and the analyses of phenotypic variations for SD, SBS, and RPR across the three environments showed high broad-sense heritability (0.6843, 0.5175, and 0.7379, respectively). In total, 44 significant QTLs were identified control the above traits across the 3 environments. A total of 14, 14, and 16 QTLs were identified for SD, SBS, and RPR across single-environment mapping, respectively. Notably, ten QTLs were stably expressed across multiple-environments, including two QTLs for SD, three for SBS, and five for RPR. Three major QTLs each accounting for over 10% of the phenotypic variation were qSD6-2 (10.03%), qSD8-2 (13.73%), and qSBS1-2 (11.89%). Comprehensive analysis of all QTLs in this study revealed that 5 QTL clusters including 12 QTLs were located on chromosomes 1, 3, 7, and 8, respectively. Among these 44 QTLs, 9 harbored 13 stalk lodging-associated SNPs that were detected by our recently published work, with 1 SNP successfully validated in the IBM Syn10 DH population. These chromosomal regions will be useful for marker-assisted selection and fine mapping of stalk lodging-related traits in maize.


Assuntos
Genes de Plantas/genética , Zea mays/genética , Mapeamento Cromossômico/métodos , Cruzamentos Genéticos , Grão Comestível/genética , Ligação Genética/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
8.
BMC Genomics ; 19(1): 91, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29370753

RESUMO

BACKGROUND: Accumulation of cadmium (Cd) in maize (Zea mays L.) poses a significant risk to human health as it is ingested via the food chain. A genome-wide association study (GWAS) was conducted in a population of 269 maize accessions with 43,737 single nucleotide polymorphisms (SNPs) to identify candidate genes and favorable alleles for controlling Cd accumulation in maize. RESULTS: When grown in contaminated soil, accessions varied significantly in leaf Cd concentration at both the seeding and maturing stages with phenotypic variation and the coefficient of variation all above 48%. The co-localized region between SYN27837 (147,034,650 bp) and SYN36598 (168,551,327 bp) on chromosome 2 was associated with leaf Cd under three soil conditions varying in Cd content in 2015 and 2016. The significant SNP (SYN25051) at position 161,275,547 could explained 27.1% of the phenotype variation. Through QTL mapping using the IBMSyn10 double haploid (DH) population, we validated the existence of a major QTL identified by GWAS; qLCd2 could explain the 39.8% average phenotype variation across the experiments. Expression of GRMZM2G175576 encoding a cadmium/zinc-transporting ATPase underlying the QTL was significantly increased in roots, stems and leaves of B73, a low Cd accumulation line in response to Cd stress. CONCLUSIONS: Our findings provide new insights into the genetic control of Cd accumulation and could aid rapid development of maize genotypes with low-Cd accumulation by manipulation of the favorable alleles.


Assuntos
Cádmio/metabolismo , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Folhas de Planta/genética , Locos de Características Quantitativas , Zea mays/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Marcadores Genéticos , Genótipo , Fenótipo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Zea mays/metabolismo
9.
Mol Genet Genomics ; 293(3): 615-622, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29274071

RESUMO

Large phenotypic variations in the lead (Pb) concentration were observed in grains and leaves of maize plants. A further understanding of inheritance of Pb accumulation may facilitate improvement of low-Pb-accumulating cultivars in maize. A genome-wide association study was conducted in a population of 269 maize accessions with 43,737 single-nucleotide polymorphisms (SNPs). The Pb concentrations in leaves and kernels of 269 accessions were collected in pot-culture and field experiments in years of 2015 and 2016. Significant differences in Pb accumulation were found among individuals under different environments. Using the structure and kinship model, a total of 21 SNPs significantly associated with the Pb accumulation were identified with P < 2.28 × 10-5 and FDR < 0.05 in the pot-culture and field experiments across 2 years. Three SNPs on chromosome 4 had significant associations simultaneously with the Pb concentrations of kernels and leaves and were co-localized with the previously detected quantitative trait loci. Through ridge regression best linear unbiased prediction Pb accumulation in the association population, the prediction accuracies by cross validation were 0.18-0.59 and 0.17-0.64, depending on the k-fold and the size of the training population. The results are helpful for genetic improvement and genomic prediction of Pb accumulation in maize.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Chumbo/metabolismo , Zea mays/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Redes Reguladoras de Genes , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Zea mays/metabolismo
10.
BMC Plant Biol ; 17(1): 105, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28619030

RESUMO

BACKGROUND: Maize (Zea mays) is an important model crop for transgenic studies. However, genetic transformation of maize requires embryonic calli derived from immature embryo, and the impact of utilizing tissue culture methods on the maize epigenome is poorly understood. Here, we generated whole-genome MeDIP-seq data examining DNA methylation in dedifferentiated and normal immature maize embryos. RESULTS: We observed that most of the dedifferentiated embryos exhibited a methylation increase compared to normal embryos. Increased methylation at promoters was associated with down-regulated protein-coding gene expression; however, the correlation was not strong. Analysis of the callus and immature embryos indicated that the methylation increase was induced during induction of embryonic callus, suggesting phenotypic consequences may be caused by perturbations in genomic DNA methylation levels. The correlation between the 21-24nt small RNAs and DNA methylation regions were investigated but only a statistically significant correlation for 24nt small RNAs was observed. CONCLUSIONS: These data extend the significance of epigenetic changes during maize embryo callus formation, and the methylation changes might explain some of the observed embryonic callus variation in callus formation.


Assuntos
Metilação de DNA , DNA de Plantas/metabolismo , RNA de Plantas/metabolismo , Sementes/genética , Zea mays/embriologia , Zea mays/genética , Metilação de DNA/genética , Epigênese Genética , Genoma de Planta , Imunoprecipitação , Regiões Promotoras Genéticas , RNA Mensageiro , Sementes/citologia , Análise de Sequência de DNA , Zea mays/metabolismo
11.
Proc Natl Acad Sci U S A ; 111(14): 5135-40, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24591624

RESUMO

As an economic crop, pepper satisfies people's spicy taste and has medicinal uses worldwide. To gain a better understanding of Capsicum evolution, domestication, and specialization, we present here the genome sequence of the cultivated pepper Zunla-1 (C. annuum L.) and its wild progenitor Chiltepin (C. annuum var. glabriusculum). We estimate that the pepper genome expanded ∼0.3 Mya (with respect to the genome of other Solanaceae) by a rapid amplification of retrotransposons elements, resulting in a genome comprised of ∼81% repetitive sequences. Approximately 79% of 3.48-Gb scaffolds containing 34,476 protein-coding genes were anchored to chromosomes by a high-density genetic map. Comparison of cultivated and wild pepper genomes with 20 resequencing accessions revealed molecular footprints of artificial selection, providing us with a list of candidate domestication genes. We also found that dosage compensation effect of tandem duplication genes probably contributed to the pungent diversification in pepper. The Capsicum reference genome provides crucial information for the study of not only the evolution of the pepper genome but also, the Solanaceae family, and it will facilitate the establishment of more effective pepper breeding programs.


Assuntos
Capsicum/genética , Genoma de Planta , Elementos de DNA Transponíveis , Dados de Sequência Molecular , Proteínas de Plantas/genética , Retroelementos , Seleção Genética , Transcrição Gênica
12.
Physiol Plant ; 158(4): 452-462, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27194582

RESUMO

In this study, a maize inbred line with a strong capacity to induce embryonic callus, 18-599R, was used to analyze the transcription factors expressed during embryonic callus formation. A total of 1180 transcription factors were found to be expressed during three key stages of callus induction. Of these, compared with control, 361, 346 and 328 transcription factors were significantly downregulated during stages I, II and III, respectively. In contrast, 355, 372 and 401 transcription factors (TFs) were upregulated during the respective stages. We constructed a transcription factor-mediated regulatory network and found that plant hormone signal transduction was the pathway most significantly enriched among TFs. This pathway includes 48 TFs regulating cell enlargement, cell differentiation, cell division and cell dedifferentiation via the response to plant hormones. Through real-time polymerase chain reaction (PCR) and degradome sequencing, we identified 23 transcription factors that are regulated by miRNA. Through further analysis, ZmMYB138, a member of the MYB transcription factor family localized in the nucleus, was verified to promote embryonic callus formation in the maize embryo through GA signal transduction.


Assuntos
Sementes/genética , Fatores de Transcrição/genética , Zea mays/genética , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Giberelinas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/fisiologia , Zea mays/fisiologia
13.
Genomics ; 106(1): 52-60, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25847872

RESUMO

The present study profiled and analyzed gene expression of the maize ear at four key developmental stages. Based on genome-wide profile analysis, we detected differential mRNA of maize genes. Some of the differentially expressed genes (DEGs) were predicted to be potential candidates of maize ear development. Several well-known genes were found with reported mutant analyses, such as, compact plant2 (ct2), zea AGAMOUS homolog1 (zag1), bearded ear (bde), and silky1 (si1). MicroRNAs such as microRNA156 were predicted to target genes involved in maize ear development. Antisense transcripts were widespread throughout all the four stages, and are suspected to play important roles in maize ear development. Thus, identification and characterization of important genes and regulators at all the four developmental stages will contribute to an improved understanding of the molecular mechanisms responsible for maize ear development.


Assuntos
Transcriptoma , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Genoma de Planta , RNA Antissenso/análise , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zea mays/metabolismo
14.
BMC Genomics ; 16: 1078, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26691201

RESUMO

BACKGROUND: To safeguard the food supply for the growing human population, it is important to understand and exploit the genetic basis of quantitative traits. Next-generation sequencing technology performs advantageously and effectively in genetic mapping and genome analysis of diverse genetic resources. Hence, we combined re-sequencing technology and a bin map strategy to construct an ultra-high-density bin map with thousands of bin markers to precisely map a quantitative trait locus. RESULTS: In this study, we generated a linkage map containing 1,151,856 high quality SNPs between Mo17 and B73, which were verified in the maize intermated B73 × Mo17 (IBM) Syn10 population. This resource is an excellent complement to existing maize genetic maps available in an online database  (iPlant, http://data.maizecode.org/maize/qtl/syn10/ ). Moreover, in this population combined with the IBM Syn4 RIL population, we detected 135 QTLs for flowering time and plant height traits across the two populations. Eighteen known functional genes and twenty-five candidate genes for flowering time and plant height trait were fine-mapped into a 2.21-4.96 Mb interval. Map expansion and segregation distortion were also analyzed, and evidence for inadvertent selection of early flowering time in the process of mapping population development was observed. Furthermore, an updated integrated map with 1,151,856 high-quality SNPs, 2,916 traditional markers and 6,618 bin markers was constructed. The data were deposited into the iPlant Discovery Environment (DE), which provides a fundamental resource of genetic data for the maize genetic research community. CONCLUSIONS: Our findings provide basic essential genetic data for the maize genetic research community. An updated IBM Syn10 population and a reliable, verified high-quality SNP set between Mo17 and B73 will aid in future molecular breeding efforts.


Assuntos
Mapeamento Cromossômico/métodos , Locos de Características Quantitativas , Zea mays/genética , Ligação Genética , Genoma de Planta , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Zea mays/fisiologia
15.
Biochem Biophys Res Commun ; 464(4): 1040-1047, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26212435

RESUMO

The heavy metal cadmium (Cd), acts as a widespread environmental contaminant, which has shown to adversely affect human health, food safety and ecosystem safety in recent years. However, research on how plant respond to various kinds of heavy metal stress is scarcely reported, especially for understanding of complex molecular regulatory mechanisms and elucidating the gene networks of plant respond to Cd stress. Here, transcriptomic changes during Mo17 and B73 seedlings development responsive to Cd pollution were investigated and comparative RNAseq-based approach in both genotypes were performed. 115 differential expression genes (DEGs) with significant alteration in expression were found co-modulated in both genotypes during the maize seedling development; of those, most of DGEs were found comprised of stress and defense responses proteins, transporters, as well as transcription factors, such as thaumatin-like protein, ZmOPR2 and ZmOPR5. More interestingly, genotype-specific transcriptional factors changes induced by Cd stress were found contributed to the regulatory mechanism of Cd sensitivity in both different genotypes. Moreover, 12 co-expression modules associated with specific biological processes or pathways (M1 to M12) were identified by consensus co-expression network. These results will expand our understanding of complex molecular mechanism of response and defense to Cd exposure in maize seedling roots.


Assuntos
Cádmio/toxicidade , Zea mays/efeitos dos fármacos , Inocuidade dos Alimentos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/efeitos dos fármacos , Genótipo , Humanos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Análise de Sequência de RNA , Poluentes do Solo/toxicidade , Estresse Fisiológico , Transcriptoma/efeitos dos fármacos , Zea mays/genética , Zea mays/crescimento & desenvolvimento
16.
Biochem Biophys Res Commun ; 458(2): 287-93, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25645016

RESUMO

Lead (Pb), as a heavy metal element, has become the most important metal pollutant of the environment. With allocating a relatively higher proportion of its biomass in roots, maize could be a potential important model to study the phytoremediation of Pb-contaminated soil. Here we analyzed the maize root transcriptome of inbred lines 9782 under heavy metal lead (Pb) pollution, which was identified as a non-hyperaccumulator for Pb in roots. In the present study, more than 98 millions reads were mapped to define gene structure and detect polymorphism, thereby to qualify transcript abundance along roots development under Pb treatment. A total of 17,707, 17,440, 16,998 and 16,586 genes were identified in maize roots at four developmental stages (0, 12 h, 24 h and 48 h) respectively and 2,825, 2,626, 2161 and 2260 stage-specifically expressed genes were also identified respectively. In addition, based on our RNA-Seq data, transcriptomic changes during maize root development responsive to Pb were investigated. A total of 384 differentially expressed genes (DEGs) (log2Ratio ≥ 1, FDR ≤ 0.001) were identified, of which, 36 genes with significant alteration in expression were detected in four developmental stages; 12 DEGs were randomly selected and successful validated by qRT-PCR. Additionally, many transcription factor families might act as the important regulators at different developmental stages, such as bZIP, ERF and GARP et al. These results will expand our understanding of the complex molecular and cellular events in maize root development and provide a foundation for future study on root development in maize under heavy metal pollution and other cereal crops.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Chumbo/farmacologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/fisiologia , Poluentes do Solo/farmacologia , Transcriptoma/fisiologia , Zea mays/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Zea mays/efeitos dos fármacos
17.
Int J Mol Sci ; 16(3): 5714-40, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25775154

RESUMO

Drought stress response is a complex trait regulated at transcriptional and post-transcriptional levels in tobacco. Since the 1990s, many studies have shown that miRNAs act in many ways to regulate target expression in plant growth, development and stress response. The recent draft genome sequence of Nicotiana benthamiana has provided a framework for Digital Gene Expression (DGE) and small RNA sequencing to understand patterns of transcription in the context of plant response to environmental stress. We sequenced and analyzed three Digital Gene Expression (DGE) libraries from roots of normal and drought-stressed tobacco plants, and four small RNA populations from roots, stems and leaves of control or drought-treated tobacco plants, respectively. We identified 276 candidate drought responsive genes (DRGs) with sequence similarities to 64 known DRGs from other model plant crops, 82 were transcription factors (TFs) including WRKY, NAC, ERF and bZIP families. Of these tobacco DRGs, 54 differentially expressed DRGs included 21 TFs, which belonged to 4 TF families such as NAC (6), MYB (4), ERF (10), and bZIP (1). Additionally, we confirmed expression of 39 known miRNA families (122 members) and five conserved miRNA families, which showed differential regulation under drought stress. Targets of miRNAs were further surveyed based on a recently published study, of which ten targets were DRGs. An integrated gene regulatory network is proposed for the molecular mechanisms of tobacco root response to drought stress using differentially expressed DRGs, the changed expression profiles of miRNAs and their target transcripts. This network analysis serves as a reference for future studies on tobacco response stresses such as drought, cold and heavy metals.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , MicroRNAs/metabolismo , Nicotiana/genética , Estresse Fisiológico/genética , Secas , Redes Reguladoras de Genes , MicroRNAs/genética , Raízes de Plantas/genética , Análise de Sequência de RNA
18.
BMC Genomics ; 15: 25, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24422852

RESUMO

BACKGROUND: In plants, microRNAs (miRNAs) are endogenous ~22 nt RNAs that play important regulatory roles in many aspects of plant biology, including metabolism, hormone response, epigenetic control of transposable elements, and stress response. Extensive studies of miRNAs have been performed in model plants such as rice and Arabidopsis thaliana. In maize, most miRNAs and their target genes were analyzed and identified by clearly different treatments, such as response to low nitrate, salt and drought stress. However, little is known about miRNAs involved in maize ear development. The objective of this study is to identify conserved and novel miRNAs and their target genes by combined small RNA and degradome sequencing at four inflorescence developmental stages. RESULTS: We used deep-sequencing, miRNA microarray assays and computational methods to identify, profile, and describe conserved and non-conserved miRNAs at four ear developmental stages, which resulted in identification of 22 conserved and 21-maize-specific miRNA families together with their corresponding miRNA*. Comparison of miRNA expression in these developmental stages revealed 18 differentially expressed miRNA families. Finally, a total of 141 genes (251 transcripts) targeted by 102 small RNAs including 98 miRNAs and 4 ta-siRNAs were identified by genomic-scale high-throughput sequencing of miRNA cleaved mRNAs. Moreover, the differentially expressed miRNAs-mediated pathways that regulate the development of ears were discussed. CONCLUSIONS: This study confirmed 22 conserved miRNA families and discovered 26 novel miRNAs in maize. Moreover, we identified 141 target genes of known and new miRNAs and ta-siRNAs. Of these, 72 genes (117 transcripts) targeted by 62 differentially expressed miRNAs may attribute to the development of maize ears. Identification and characterization of these important classes of regulatory genes in maize may improve our understanding of molecular mechanisms controlling ear development.


Assuntos
Genes de Plantas , MicroRNAs/genética , Zea mays/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Biologia Computacional , Bases de Dados Genéticas , Secas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/metabolismo , Nitratos/química , Nitratos/farmacologia , Oryza/genética , Oryza/metabolismo , Clivagem do RNA , RNA de Plantas/genética , RNA de Plantas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Sais/química , Sais/farmacologia , Transcriptoma , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
19.
Funct Integr Genomics ; 14(2): 319-32, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24664280

RESUMO

MicroRNAs (miRNAs) play a pivotal role in post-transcriptional regulation of gene expression in plants. In this study, we investigate miRNAs in an agronomically important common tobacco in China, named Honghua Dajinyuan (a drought-tolerant cultivar). Here, we report a comprehensive analysis of miRNA expression profiles in mock-treat grown (CK) and 20 % polyethylene glycol-grown (PEG-grown) tobacco roots using a high-throughput sequencing approach. A total of 656 unique miRNAs representing 53 miRNA families were identified in the two libraries, of which 286 unique miRNAs representing 162 microRNAs were differentially expressed. In addition, nine differentially expressed microRNAs selected from different expressed miRNA family with high abundance were subjected to further analysis and validated by quantitative real-time PCR (Q-PCR). In addition, the expression pattern of these identified candidate conserved miRNA and target genes of three identified miRNA (nta-miR172b, nta-miR156i, and nta-miR160a) were also validated by Q-PCR. Gene ontology (GO) enrichment analysis suggests that the putative target genes of these differentially expressed miRNAs are involved in metabolic process and response to stimulus. In particular, 25 target genes are involved in regulating plant hormone signal transduction and metabolism, indicating that these association microRNAs may play important regulatory roles in responding to PEG resistance. Moreover, this study adds a significant number of novel miRNAs to the tobacco miRNome.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , MicroRNAs/genética , Nicotiana/genética , Raízes de Plantas/genética , RNA de Plantas/genética , Desidratação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Biblioteca Gênica , MicroRNAs/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Polietilenoglicóis/farmacologia , RNA de Plantas/metabolismo , Transdução de Sinais , Estresse Fisiológico , Nicotiana/efeitos dos fármacos , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo
20.
Mol Biol Rep ; 41(4): 2471-83, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24420865

RESUMO

Currently, the molecular regulation mechanisms of disease-resistant involved in maize leaf sheaths infected by banded leaf and sheath blight (BLSB) are poorly known. To gain insight into the transcriptome dynamics that are associated with their disease-resistant, genome-wide gene expression profiling was conducted by Solexa sequencing. More than four million tags were generated from sheath tissues without any leaf or development leaf, including 193,222 and 204,824 clean tags in the two libraries, respectively. Of these, 82,864 (55.4 %) and 91,678 (51.5 %) tags were matched to the reference genes. The most differentially expressed tags with log2 ratio >2 or <-2 (P < 0.001) were further analyzed, representing 1,476 up-regulated and 1,754 down-regulated genes, except for unknown transcripts, which were classified into 11 functional categories. The most enriched categories were those of metabolism, signal transduction and cellular transport. Next, the expression patterns of 12 genes were assessed by quantitative real-time PCR, and it is showed the results were general agreement with the Solexa analysis, although the degree of change was lower in amplitude. In conclusion, we first reveal the complex changes in the transcriptome during the early development of maize sheath infected by BLSB and provide a comprehensive set of data that are essential for understanding its molecular regulation mechanism.


Assuntos
Basidiomycota/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Transcriptoma , Zea mays/genética , Zea mays/microbiologia , Biologia Computacional , Biblioteca Gênica , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Reprodutibilidade dos Testes , Transdução de Sinais , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA