RESUMO
Nervous necrosis virus (NNV) results in high mortality rates of infected marine fish worldwide. Interferons (IFNs) are cytokines in vertebrates that suppress viral replication and regulate immune responses. Heterologous overexpression of fish IFN in bacteria could be problematic because of protein solubility and loss of function due to protein misfolding. In this study, a protein model of the IFN-α of Epinephelus septemfasciatus was built based on comparative modeling. In addition, PelB and SacB signal peptides were fused to the N-terminus of E. septemfasciatus IFN-α for overexpression of soluble, secreted IFN in Escherichia coli (E-IFN) and Bacillus subtilis (B-IFN). Cytotoxicity tests indicated that neither recombinant grouper IFN-α were cytotoxic to a grouper head kidney cell line (GK). The GK cells stimulated with E-IFN and B-IFN exhibited elevated expression of antiviral Mx genes when compared with the control group. The NNV challenge experiments demonstrated that GK cells pretreated or co-treated with E-IFN and B-IFN individually had three times the cell survival rates of untreated cells, indicating the cytoprotective ability of our recombinant IFNs. These data provide a protocol for the production of soluble, secreted, and functional grouper IFN of high purity, which may be applied to aquaculture fisheries for antiviral infection.
Assuntos
Bacillus subtilis , Escherichia coli , Proteínas de Peixes , Interferon-alfa , Perciformes/genética , Animais , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Linhagem Celular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Peixes/biossíntese , Proteínas de Peixes/genética , Proteínas de Peixes/farmacologia , Interferon-alfa/biossíntese , Interferon-alfa/genética , Interferon-alfa/farmacologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genéticaRESUMO
Vibrio cholerae ATP-binding cassette transporter VcaM (V. cholerae ABC multidrug resistance pump) has previously been shown to confer resistance to a variety of medically important drugs. In this study, we set to analyse its properties both in vitro in detergent-solubilised state and in vivo to differentiate its dependency on auxiliary proteins for its function. We report the first detailed kinetic parameters of purified VcaM and the rate of phosphate (Pi) production. To determine the possible functional dependencies of VcaM on the tripartite efflux pumps we then utilized different E. coli strains lacking the principal secondary transporter AcrB (Acriflavine resistance protein), as well as cells lacking the outer membrane factor (OMF) TolC (Tolerance to colicins). Consistent with the ATPase function of VcaM we found it to be susceptible to sodium orthovanadate (NaOV), however, we also found a clear dependency of VcaM function on TolC. Inhibitors targeting secondary active transporters had no effects on either VcaM-conferred resistance or Hoechst 33342 accumulation, suggesting that VcaM might be capable of engaging with the TolC-channel without periplasmic mediation by additional transporters. Our findings are indicative of VcaM being capable of a one-step substrate translocation from cytosol to extracellular space utilising the TolC-channel, making it the only multidrug ABC-transporter outside of the MacB-family with demonstrable TolC-dependency.
Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Vibrio cholerae/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Trifosfato de Adenosina/química , Clonagem Molecular , Citosol/metabolismo , Farmacorresistência Bacteriana Múltipla , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Espaço Extracelular/metabolismo , Técnicas de Inativação de Genes , Hidrólise , Fosfatos/metabolismo , Vanadatos/farmacologia , Vibrio cholerae/genéticaRESUMO
Drug-resistant efflux pumps play a crucial role in bacterial antibiotic resistance. In this study, potential efflux pump inhibitors (EPIs) with a diphenylmethane scaffold were screened and evaluated against drug-resistant Escherichia coli. Twenty-four compounds were docked against the drug-binding site of E. coli multidrug transporter AcrB, and 2,2-diphenylethanol (DPE), di-p-tolyl-methanol (DPT), and 4-(benzylphenyl) acetonitrile (BPA) were screened for their highest binding free energy. The modulation assay was further used for EPI evaluation, revealing that DPE, DPT, and BPA could reduce the drug IC50 value in E. coli strains overexpressing AcrB, indicating their modulation activity. Only DPE and BPA enhanced intracellular dye accumulation and inhibited the efflux of ethidium bromide and erythromycin. In addition, DPE and BPA showed an elevated post-antibiotic effect on drug-resistant E. coli, and they did not damage the permeability of the bacterial outer membrane. The cell toxicity test showed that DPE and BPA had limited human-cell toxicity. Therefore, DPE and BPA demonstrate efflux pump inhibitory activity, and they should be further explored as potential enhancers to improve the effectiveness of existing antibiotics against drug-resistant E. coli.
RESUMO
The World Health Organization indicated that antibiotic resistance is one of the greatest threats to health, food security, and development in the world. Drug resistance efflux pumps are essential for antibiotic resistance in bacteria. Here, we evaluated the plant phenolic compound ethyl 3,4-dihydroxybenzoate (EDHB) for its efflux pump inhibitory (EPI) activity against drug-resistant Escherichia coli. The half-maximal inhibitory concentration, modulation assays, and time-kill studies indicated that EDHB has limited antibacterial activity but can potentiate the activity of antibiotics for drug-resistant E. coli. Dye accumulation/efflux and MALDI-TOF studies showed that EDHB not only significantly increases dye accumulation and reduces dye efflux but also increases the extracellular amount of antibiotics in the drug-resistant E. coli, indicating its interference with substrate translocation via a bacterial efflux pump. Molecular docking analysis using AutoDock Vina indicated that EDHB putatively posed within the distal binding pocket of AcrB and in close interaction with the residues by H-bonds and hydrophobic contacts. Additionally, EDHB showed an elevated postantibiotic effect on drug-resistant E. coli. Our toxicity assays showed that EDHB did not change the bacterial membrane permeability and exhibited mild human cell toxicity. In summary, these findings indicate that EDHB could serve as a potential EPI for drug-resistant E. coli.
RESUMO
Drug efflux pumps are one of the major elements used by antibiotic-resistant bacteria. Efflux pump inhibitors (EPIs) are potential therapeutic agents for adjunctive therapy, which can restore the activity of antibiotics that are no longer effective against pathogens. This study evaluated the seaweed compound diphenylmethane (DPM) for its EPI activity. The IC50 and modulation results showed that DPM has no antibacterial activity but can potentiate the activity of antibiotics against drug-resistant E. coli. Time-kill studies reported that a combination of DPM and erythromycin exhibited greater inhibitory activity against drug-resistant Escherichia coli. Dye accumulation and dye efflux studies using Hoechst 33342 and ethidium bromide showed that the addition of DPM significantly increased dye accumulation and reduced dye efflux in drug-resistant E. coli, suggesting its interference with dye translocation by an efflux pump. Using MALDI-TOF, it was observed that the addition of DPM could continuously reduce antibiotic efflux in drug-resistant E. coli. Additionally, DPM did not seem to damage the E. coli membranes, and the cell toxicity test showed that it features mild human-cell toxicity. In conclusion, these findings showed that DPM could serve as a potential EPI for drug-resistant E. coli.
RESUMO
Multidrug efflux pumps play an essential role in antibiotic resistance. The conventional methods, including minimum inhibitory concentration and fluorescent assays, to monitor transporter efflux activity might have some drawbacks, such as indirect evidence or interference from color molecules. In this study, MALDI-TOF MS use was explored for monitoring drug efflux by a multidrug transporter, and the results were compared for validation with the data from conventional methods. Minimum inhibitory concentration was used first to evaluate the activity of Escherichia coli drug transporter AcrB, and this analysis showed that the E. coli overexpressing AcrB exhibited elevated resistance to various antibiotics and dyes. Fluorescence-based studies indicated that AcrB in E. coli could decrease the accumulation of intracellular dyes and display various efflux rate constants for different dyes, suggesting AcrB's efflux activity. The MALDI-TOF MS analysis parameters were optimized to maintain a detection accuracy for AcrB's substrates; furthermore, the MS data showed that E. coli overexpressing AcrB led to increased ions abundancy of various dyes and drugs in the extracellular space at different rates over time, illustrating continuous substrate efflux by AcrB. This study concluded that MALDI-TOF MS is a reliable method that can rapidly determine the drug pump efflux activity for various substrates.
RESUMO
Multidrug-resistant pathogens are a significant clinical problem. Efflux pump inhibitors (EPIs) can restore the activities of existing antibiotics by interfering with drug efflux pumps located in bacterial cell membranes. Seaweeds are important sources of biologically active metabolites of natural origin; however, their potential as EPIs remains uninvestigated. Here, functional extracts from the brown seaweeds Laminaria japonica and Sargassum horneri and the red seaweeds Gracilaria sp. and Porphyra dentata were evaluated as potential EPIs against drug-resistant Escherichia coli. All these extracts were found to potentiate the activities of drugs in modulation tests, although not to the same extent. Synergistic effects of the extracts and the drug clarithromycin were observed from the onset of Time-kill assays, with no evidence of bacterial regrowth. Ethidium bromide accumulation studies revealed that the efflux decreased in the presence of each extract, as indicated by the presence of EPIs. Most identified EPIs that have been discovered to date have aromatic structures, and the seaweed extracts were found to contain various terpenes, terpenoids, phenolic compounds, indoles, pyrrole derivatives, alkaloids, and halogenated aromatic compounds. Our study highlights the potential of these compounds of the seaweeds as drug EPIs.