Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small Methods ; : e2301287, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054596

RESUMO

This study develops a single-atom Pt-loaded graphitic carbon nitride (SA-Pt/CN) and evaluates its piezo-flexocatalytic properties by conducting a hydrogen evolution reaction (HER) and Rhodamine B (RB) dye degradation test under ultrasonic vibration in the dark. SA-Pt/CN has a hydrogen gas yield of 1283.8 µmol g-1  h-1 , which is 23.3 times higher than that of pristine g-C3 N4 . Moreover, SA-Pt/CN enhances the dye degradation reaction rate by ≈2.3 times compared with the pristine sample. SA-Pt/CN exhibits lattice distortion and strain gradient enlargement caused by the single atom Pt at the N sites of g-C3 N4 , which disrupts the symmetric structure and contributes to the enhancement of piezoelectric and flexoelectric polarization. As far as it is known, this is the first study to investigate the piezo-flexocatalytic reaction of SA-Pt/CN without light irradiation and provides new insights into single-atom piezocatalysts.

2.
ACS Nano ; 17(17): 17417-17426, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37581913

RESUMO

A high-entropy oxide nanocomposite with Ag(CuZn)(AlCr)2O4 and CuO phases is fabricated to form an abundantly hierarchical wrinkled surface. Application of a mechanical force to the nanocomposite resulted in a nonhomogeneous strain gradient at the interface between the Ag(CuZn)(AlCr)2O4 and CuO phases, changing the local charge distribution and creating flexoelectric polarization that delayed electron/hole recombination. Transmission electron microscopy energy-dispersive X-ray spectroscopy mapping revealed that the Ag, Cu, Zn, Al, Cr, and O elements were highly distributed throughout the nanocomposite. The nanocomposite produced 2116 µmol·g-1 h-1 of H2 without external light irradiation, which is 980% higher than the H2 produced by the same nanocomposite under the photocatalytic process. A strong electrical field is observed at the interface between the Ag(CuZn)(AlCr)2O4 and CuO phases, demonstrating that a flexoelectric potential (flexopotential) is established at the structural boundaries because the strain gradient is localized at these interfaces. The nanocomposite is a promising approach for environmentally friendly energy production.

3.
Mater Horiz ; 8(11): 3149-3162, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610636

RESUMO

This work reports a new approach to amending polydimethylsiloxane (PDMS) by supporting α-Fe2O3 nanoparticles (NPs), thereby generating a material suitable for use as a negative triboelectric material. Additionally, human hair exhibits a profound triboelectrification effect and is a natural regenerative substance, and it was processed into a film to be used as a positive triboelectric material. Spatial distribution of α-Fe2O3 NPs, the special surface morphologies of a negative tribological layer containing nano-clefts with controlled sizes and a valley featuring a positive tribolayer based on human hair made it possible to demonstrate facile and scalable fabrication of a triboelectric nanogenerator (TENG) presenting enhanced performance; this nanogenerator produced a mean peak-to-peak voltage of 370.8 V and a mean output power density of 247.2 µW cm-2 in the vertical contact-separation mode. This study elucidates the fundamental charge transfer mechanism governing the triboelectrification efficiency and its use in harvesting electricity for the further development of powerful TENGs suitable for integration into wearable electronics and self-charging power cells, and the work also illustrates a recycling bioeconomy featuring systematic utilization of human hair waste as a regenerative resource for nature and society.


Assuntos
Fontes de Energia Elétrica , Nanopartículas , Eletricidade , Eletrônica , Humanos , Nanotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA