Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Cell ; 57(4): 662-673, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25601757

RESUMO

The TET2 DNA dioxygenase regulates cell identity and suppresses tumorigenesis by modulating DNA methylation and expression of a large number of genes. How TET2, like most other chromatin-modifying enzymes, is recruited to specific genomic sites is unknown. Here we report that WT1, a sequence-specific transcription factor, is mutated in a mutually exclusive manner with TET2, IDH1, and IDH2 in acute myeloid leukemia (AML). WT1 physically interacts with and recruits TET2 to its target genes to activate their expression. The interaction between WT1 and TET2 is disrupted by multiple AML-derived TET2 mutations. TET2 suppresses leukemia cell proliferation and colony formation in a manner dependent on WT1. These results provide a mechanism for targeting TET2 to a specific DNA sequence in the genome. Our results also provide an explanation for the mutual exclusivity of WT1 and TET2 mutations in AML, and suggest an IDH1/2-TET2-WT1 pathway in suppressing AML.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogênicas/fisiologia , Proteínas WT1/fisiologia , Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HL-60 , Humanos , Proteína 2 Inibidora de Diferenciação/genética , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/patologia , Mutação , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo
2.
Genes Dev ; 26(12): 1326-38, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22677546

RESUMO

Two Krebs cycle genes, fumarate hydratase (FH) and succinate dehydrogenase (SDH), are mutated in a subset of human cancers, leading to accumulation of their substrates, fumarate and succinate, respectively. Here we demonstrate that fumarate and succinate are competitive inhibitors of multiple α-ketoglutarate (α-KG)-dependent dioxygenases, including histone demethylases, prolyl hydroxylases, collagen prolyl-4-hydroxylases, and the TET (ten-eleven translocation) family of 5-methlycytosine (5mC) hydroxylases. Knockdown of FH and SDH results in elevated intracellular levels of fumarate and succinate, respectively, which act as competitors of α-KG to broadly inhibit the activity of α-KG-dependent dioxygenases. In addition, ectopic expression of tumor-derived FH and SDH mutants inhibits histone demethylation and hydroxylation of 5mC. Our study suggests that tumor-derived FH and SDH mutations accumulate fumarate and succinate, leading to enzymatic inhibition of multiple α-KG-dependent dioxygenases and consequent alterations of genome-wide histone and DNA methylation. These epigenetic alterations associated with mutations of FH and SDH likely contribute to tumorigenesis.


Assuntos
Fumarato Hidratase/genética , Fumaratos/farmacologia , Histona Desmetilases/metabolismo , Ácidos Cetoglutáricos/farmacologia , Mutação/genética , Succinato Desidrogenase/genética , Ácido Succínico/farmacologia , Animais , Biocatálise/efeitos dos fármacos , Células Cultivadas , Metilação de DNA/efeitos dos fármacos , Dioxigenases/metabolismo , Endostatinas/metabolismo , Fumaratos/química , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Genoma Humano/genética , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ácidos Cetoglutáricos/química , Camundongos , Modelos Biológicos , Ácido Succínico/química , Proteínas Supressoras de Tumor/genética
3.
EMBO J ; 34(8): 1110-25, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25755250

RESUMO

The malate-aspartate shuttle is indispensable for the net transfer of cytosolic NADH into mitochondria to maintain a high rate of glycolysis and to support rapid tumor cell growth. The malate-aspartate shuttle is operated by two pairs of enzymes that localize to the mitochondria and cytoplasm, glutamate oxaloacetate transaminases (GOT), and malate dehydrogenases (MDH). Here, we show that mitochondrial GOT2 is acetylated and that deacetylation depends on mitochondrial SIRT3. We have identified that acetylation occurs at three lysine residues, K159, K185, and K404 (3K), and enhances the association between GOT2 and MDH2. The GOT2 acetylation at these three residues promotes the net transfer of cytosolic NADH into mitochondria and changes the mitochondrial NADH/NAD(+) redox state to support ATP production. Additionally, GOT2 3K acetylation stimulates NADPH production to suppress ROS and to protect cells from oxidative damage. Moreover, GOT2 3K acetylation promotes pancreatic cell proliferation and tumor growth in vivo. Finally, we show that GOT2 K159 acetylation is increased in human pancreatic tumors, which correlates with reduced SIRT3 expression. Our study uncovers a previously unknown mechanism by which GOT2 acetylation stimulates the malate-aspartate NADH shuttle activity and oxidative protection.


Assuntos
Aspartato Aminotransferase Mitocondrial/metabolismo , Ácido Aspártico/metabolismo , Carcinoma Ductal Pancreático/patologia , Malatos/metabolismo , Neoplasias Pancreáticas/patologia , Sirtuína 3/metabolismo , Acetilação , Animais , Transporte Biológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proliferação de Células/genética , Células Cultivadas , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , NAD/metabolismo , Oxirredução , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Sirtuína 3/genética
5.
PLoS Biol ; 13(9): e1002243, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26356530

RESUMO

Phosphoglycerate kinase 1 (PGK1) catalyzes the reversible transfer of a phosphoryl group from 1, 3-bisphosphoglycerate (1, 3-BPG) to ADP, producing 3-phosphoglycerate (3-PG) and ATP. PGK1 plays a key role in coordinating glycolytic energy production with one-carbon metabolism, serine biosynthesis, and cellular redox regulation. Here, we report that PGK1 is acetylated at lysine 220 (K220), which inhibits PGK1 activity by disrupting the binding with its substrate, ADP. We have identified KAT9 and HDAC3 as the potential acetyltransferase and deacetylase, respectively, for PGK1. Insulin promotes K220 deacetylation to stimulate PGK1 activity. We show that the PI3K/AKT/mTOR pathway regulates HDAC3 S424 phosphorylation, which promotes HDAC3-PGK1 interaction and PGK1 K220 deacetylation. Our study uncovers a previously unknown mechanism for the insulin and mTOR pathway in regulation of glycolytic ATP production and cellular redox potential via HDAC3-mediated PGK1 deacetylation.


Assuntos
Fosfoglicerato Quinase/metabolismo , Acetilação , Difosfato de Adenosina/metabolismo , Animais , Metabolismo dos Carboidratos , Ativação Enzimática , Glicólise , Células HEK293 , Histona Acetiltransferases/metabolismo , Histona Desacetilases/metabolismo , Humanos , Masculino , Camundongos Endogâmicos BALB C , Proteínas do Tecido Nervoso/metabolismo , Oxirredução , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
7.
Cell Rep ; 32(2): 107877, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668244

RESUMO

Evolutionarily conserved SCAN (named after SRE-ZBP, CTfin51, AW-1, and Number 18 cDNA)-domain-containing zinc finger transcription factors (ZSCAN) have been found in both mouse and human genomes. Zscan4 is transiently expressed during zygotic genome activation (ZGA) in preimplantation embryos and induced pluripotent stem cell (iPSC) reprogramming. However, little is known about the mechanism of Zscan4 underlying these processes of cell fate control. Here, we show that Zscan4f, a representative of ZSCAN proteins, is able to recruit Tet2 through its SCAN domain. The Zscan4f-Tet2 interaction promotes DNA demethylation and regulates the expression of target genes, particularly those encoding glycolytic enzymes and proteasome subunits. Zscan4f regulates metabolic rewiring, enhances proteasome function, and ultimately promotes iPSC generation. These results identify Zscan4f as an important partner of Tet2 in regulating target genes and promoting iPSC generation and suggest a possible and common mechanism shared by SCAN family transcription factors to recruit ten-eleven translocation (TET) DNA dioxygenases to regulate diverse cellular processes, including reprogramming.


Assuntos
Reprogramação Celular/genética , Proteínas de Ligação a DNA/metabolismo , Proteostase/genética , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Sequência de Bases , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Dioxigenases , Glicólise/genética , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células MCF-7 , Camundongos Endogâmicos C57BL , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Domínios Proteicos , Proteínas Proto-Oncogênicas/genética , Regulação para Cima
8.
Cell Rep ; 25(6): 1485-1500.e4, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30404004

RESUMO

The TET2 DNA dioxygenase regulates gene expression by catalyzing demethylation of 5-methylcytosine, thus epigenetically modulating the genome. TET2 does not contain a sequence-specific DNA-binding domain, and how it is recruited to specific genomic sites is not fully understood. Here we carried out a mammalian two-hybrid screen and identified multiple transcriptional regulators potentially interacting with TET2. The SMAD nuclear interacting protein 1 (SNIP1) physically interacts with TET2 and bridges TET2 to bind several transcription factors, including c-MYC. SNIP1 recruits TET2 to the promoters of c-MYC target genes, including those involved in DNA damage response and cell viability. TET2 protects cells from DNA damage-induced apoptosis dependending on SNIP1. Our observations uncover a mechanism for targeting TET2 to specific promoters through a ternary interaction with a co-activator and many sequence-specific DNA-binding factors. This study also reveals a TET2-SNIP1-c-MYC pathway in mediating DNA damage response, thereby connecting epigenetic control to maintenance of genome stability.


Assuntos
Dano ao DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Biocatálise/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/química , Dioxigenases , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas/química , Proteínas de Ligação a RNA , Transcrição Gênica/efeitos dos fármacos
10.
Cancer Res ; 76(23): 6924-6936, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27758890

RESUMO

Fatty acid synthase (FASN) is the terminal enzyme in de novo lipogenesis and plays a key role in cell proliferation. Pharmacologic inhibitors of FASN are being evaluated in clinical trials for treatment of cancer, obesity, and other diseases. Here, we report a previously unknown mechanism of FASN regulation involving its acetylation by KAT8 and its deacetylation by HDAC3. FASN acetylation promoted its degradation via the ubiquitin-proteasome pathway. FASN acetylation enhanced its association with the E3 ubiquitin ligase TRIM21. Acetylation destabilized FASN and resulted in decreased de novo lipogenesis and tumor cell growth. FASN acetylation was frequently reduced in human hepatocellular carcinoma samples, which correlated with increased HDAC3 expression and FASN protein levels. Our results suggest opportunities to target FASN acetylation as an anticancer strategy. Cancer Res; 76(23); 6924-36. ©2016 AACR.


Assuntos
Processos de Crescimento Celular/genética , Ácido Graxo Sintases/genética , Lipogênese/genética , Acetilação , Proliferação de Células , Humanos , Transdução de Sinais , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA