RESUMO
Two-dimensional (2D) van der Waals (vdW) heterostructures have attracted considerable attention in recent years1-5. The most widely used method of fabrication is to stack mechanically exfoliated micrometre-sized flakes6-18, but this process is not scalable for practical applications. Despite thousands of 2D materials being created, using various stacking combinations1-3,19-21, hardly any large 2D superconductors can be stacked intact into vdW heterostructures, greatly restricting the applications for such devices. Here we report a high-to-low temperature strategy for controllably growing stacks of multiple-layered vdW superconductor heterostructure (vdWSH) films at a wafer scale. The number of layers of 2D superconductors in the vdWSHs can be precisely controlled, and we have successfully grown 27 double-block, 15 triple-block, 5 four-block and 3 five-block vdWSH films (where one block represents one 2D material). Morphological, spectroscopic and atomic-scale structural analyses reveal the presence of parallel, clean and atomically sharp vdW interfaces on a large scale, with very little contamination between neighbouring layers. The intact vdW interfaces allow us to achieve proximity-induced superconductivity and superconducting Josephson junctions on a centimetre scale. Our process for making multiple-layered vdWSHs can easily be generalized to other situations involving 2D materials, potentially accelerating the design of next-generation functional devices and applications22-24.
RESUMO
High-entropy alloy nanoparticles (HEA-NPs) show great potential as functional materials1-3. However, thus far, the realized high-entropy alloys have been restricted to palettes of similar elements, which greatly hinders the material design, property optimization and mechanistic exploration for different applications4,5. Herein, we discovered that liquid metal endowing negative mixing enthalpy with other elements could provide a stable thermodynamic condition and act as a desirable dynamic mixing reservoir, thus realizing the synthesis of HEA-NPs with a diverse range of metal elements in mild reaction conditions. The involved elements have a wide range of atomic radii (1.24-1.97 Å) and melting points (303-3,683 K). We also realized the precisely fabricated structures of nanoparticles via mixing enthalpy tuning. Moreover, the real-time conversion process (that is, from liquid metal to crystalline HEA-NPs) is captured in situ, which confirmed a dynamic fission-fusion behaviour during the alloying process.
RESUMO
Bulk amorphous materials have been studied extensively and are widely used, yet their atomic arrangement remains an open issue. Although they are generally believed to be Zachariasen continuous random networks1, recent experimental evidence favours the competing crystallite model in the case of amorphous silicon2-4. In two-dimensional materials, however, the corresponding questions remain unanswered. Here we report the synthesis, by laser-assisted chemical vapour deposition5, of centimetre-scale, free-standing, continuous and stable monolayer amorphous carbon, topologically distinct from disordered graphene. Unlike in bulk materials, the structure of monolayer amorphous carbon can be determined by atomic-resolution imaging. Extensive characterization by Raman and X-ray spectroscopy and transmission electron microscopy reveals the complete absence of long-range periodicity and a threefold-coordinated structure with a wide distribution of bond lengths, bond angles, and five-, six-, seven- and eight-member rings. The ring distribution is not a Zachariasen continuous random network, but resembles the competing (nano)crystallite model6. We construct a corresponding model that enables density-functional-theory calculations of the properties of monolayer amorphous carbon, in accordance with observations. Direct measurements confirm that it is insulating, with resistivity values similar to those of boron nitride grown by chemical vapour deposition. Free-standing monolayer amorphous carbon is surprisingly stable and deforms to a high breaking strength, without crack propagation from the point of fracture. The excellent physical properties of this stable, free-standing monolayer amorphous carbon could prove useful for permeation and diffusion barriers in applications such as magnetic recording devices and flexible electronics.
RESUMO
Damage-associated molecular patterns (DAMPs) are endogenous molecules released by cells in response to injury or stress, recognized by host pattern recognition receptors that assess the immunological significance of cellular damage. The interaction between DAMPs and innate immune receptors triggers sterile inflammation, which serves a dual purpose: promoting tissue repair and contributing to pathological conditions, including age-related diseases. Chronic inflammation mediated by DAMPs accelerates immunosenescence and influences both tumor progression and anti-tumor immunity, underscoring the critical role of DAMPs in the nexus between aging and cancer. This review explores the characteristics of immunosenescence and its impact on age-related cancers, investigates the various types of DAMPs, their release mechanisms during cell death, and the immune activation pathways they initiate. Additionally, we examine the therapeutic potential of targeting DAMPs in age-related diseases. A detailed understanding of DAMP-induced signal transduction could provide critical insights into immune regulation and support the development of innovative therapeutic strategies.
RESUMO
In situ tailoring of two-dimensional materials' phases under external stimulus facilitates the manipulation of their properties for electronic, quantum and energy applications. However, current methods are mainly limited to the transitions among phases with unchanged chemical stoichiometry. Here we propose on-device phase engineering that allows us to realize various lattice phases with distinct chemical stoichiometries. Using palladium and selenide as a model system, we show that a PdSe2 channel with prepatterned Pd electrodes can be transformed into Pd17Se15 and Pd4Se by thermally tailoring the chemical composition ratio of the channel. Different phase configurations can be obtained by precisely controlling the thickness and spacing of the electrodes. The device can be thus engineered to implement versatile functions in situ, such as exhibiting superconducting behaviour and achieving ultralow-contact resistance, as well as customizing the synthesis of electrocatalysts. The proposed on-device phase engineering approach exhibits a universal mechanism and can be expanded to 29 element combinations between a metal and chalcogen. Our work highlights on-device phase engineering as a promising research approach through which to exploit fundamental properties as well as their applications.
RESUMO
Alkaliptosis, a form of regulated cell death, is characterized by lysosomal dysfunction and intracellular pH alkalinization. The pharmacological induction of alkaliptosis using the small molecule compound JTC801 has emerged as a promising anticancer strategy in various types of cancers, particularly pancreatic ductal adenocarcinoma (PDAC). In this study, we investigate a novel mechanism by which macropinocytosis, an endocytic process involving the uptake of extracellular material, promotes resistance to alkaliptosis in human PDAC cells. Through lipid metabolomics analysis and functional studies, we demonstrate that the inhibition of alkaliptosis by fatty acids, such as oleic acid, is not dependent on endogenous synthetic pathways but rather on exogenous uptake facilitated by macropinocytosis. Consequently, targeting macropinocytosis through pharmacological approaches (e.g., using EIPA or EHoP-016) or genetic interventions (e.g., RAC1 knockdown) effectively enhances JTC801-induced alkaliptosis in human PDAC cells. These findings provide compelling evidence that the modulation of macropinocytosis can increase the sensitivity of cancer cells to alkaliptosis inducers.
RESUMO
Paclitaxel serves as the cornerstone chemotherapy for ovarian cancer, yet its prolonged administration frequently culminates in drug resistance, presenting a substantial challenge. Here we reported that inducing alkaliptosis, rather than apoptosis or ferroptosis, effectively overcomes paclitaxel resistance. Mechanistically, ATPase H+ transporting V0 subunit D1 (ATP6V0D1), a key regulator of alkaliptosis, plays a pivotal role by mediating the downregulation of ATP-binding cassette subfamily B member 1 (ABCB1), a multidrug resistance protein. Both ATP6V0D1 overexpression through gene transfection and pharmacological enhancement of ATP6V0D1 protein stability using JTC801 effectively inhibit ABCB1 upregulation, resulting in growth inhibition in drug-resistant cells. Additionally, increasing intracellular pH to alkaline (pH 8.5) via sodium hydroxide application suppresses ABCB1 expression, whereas reducing the pH to acidic conditions (pH 6.5) with hydrochloric acid amplifies ABCB1 expression in drug-resistant cells. Collectively, these results indicate a potentially effective therapeutic strategy for targeting paclitaxel-resistant ovarian cancer by inducing ATP6V0D1-dependent alkaliptosis.
Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas , Paclitaxel , ATPases Vacuolares Próton-Translocadoras , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Paclitaxel/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Proliferação de Células/efeitos dos fármacosRESUMO
Electronic orders such as charge density wave (CDW) and superconductivity raise exotic physics and phenomena as evidenced in recently discovered kagome superconductors and transition metal chalcogenides. In most materials, CDW induces a weak, perturbative effect, manifested as shadow bands, minigaps, resistivity kinks, etc. Here we demonstrate a unique example-transition metal tetratellurides TaTe_{4}, in which the CDW order dominates the electronic structure and transport properties. Using angle-resolved photoemission spectroscopy, we found that the band structure of CDW TaTe_{4} is characterized by small, bulk electron pockets. Density functional theory analyses reveal their CDW origin from the folding of the original, large Fermi pockets. Importantly, the CDW induced pockets result in prominent frequencies in the quantum oscillation of the magnetoresistance. Satisfactory agreements are reached between results from photoemission spectroscopy, density functional theory, and quantum oscillation, concerning the shape, size, location, and angle dependence of the CDW pockets. Our results underline transition metal tetratellurides as an outstanding example for exploring the interplay between CDW, pressure induced superconductivity, and potential topological states under strong field.
RESUMO
Investigations of two-dimensional transition-metal chalcogenides (TMCs) have recently revealed interesting physical phenomena, including the quantum spin Hall effect1,2, valley polarization3,4 and two-dimensional superconductivity 5 , suggesting potential applications for functional devices6-10. However, of the numerous compounds available, only a handful, such as Mo- and W-based TMCs, have been synthesized, typically via sulfurization11-15, selenization16,17 and tellurization 18 of metals and metal compounds. Many TMCs are difficult to produce because of the high melting points of their metal and metal oxide precursors. Molten-salt-assisted methods have been used to produce ceramic powders at relatively low temperature 19 and this approach 20 was recently employed to facilitate the growth of monolayer WS2 and WSe2. Here we demonstrate that molten-salt-assisted chemical vapour deposition can be broadly applied for the synthesis of a wide variety of two-dimensional (atomically thin) TMCs. We synthesized 47 compounds, including 32 binary compounds (based on the transition metals Ti, Zr, Hf, V, Nb, Ta, Mo, W, Re, Pt, Pd and Fe), 13 alloys (including 11 ternary, one quaternary and one quinary), and two heterostructured compounds. We elaborate how the salt decreases the melting point of the reactants and facilitates the formation of intermediate products, increasing the overall reaction rate. Most of the synthesized materials in our library are useful, as supported by evidence of superconductivity in our monolayer NbSe2 and MoTe2 samples21,22 and of high mobilities in MoS2 and ReS2. Although the quality of some of the materials still requires development, our work opens up opportunities for studying the properties and potential application of a wide variety of two-dimensional TMCs.
RESUMO
Charge density waves (CDWs) in 1T-TaS2 maintain 2D ordering by forming periodic in-plane star-of-David (SOD) patterns, while they also intertwined with orbital order in the c axis. Recent theoretical calculations and surface measurements have explored 3D CDW configurations, but interlayer intertwining of a 2D CDW order remains elusive. Here, we investigate the in- and out-of-plane ordering of the commensurate CDW superstructure in a 1T-TaS2 thin flake in real space, using aberration-corrected cryogenic transmission electronic microscopy (cryo-TEM) in low-dose mode, far below the threshold dose for an electron-induced CDW phase transition. By scrutinizing the phase intensity variation of modulated Ta atoms, we visualize the penetrative 3D CDW stacking structure, revealing an intertwining multidomain structure with three types of vertical CDW stacking configurations. Our results provide microstructural evidence for the coexistence of local Mott insulation and metal phases and offer a paradigm for studying the CDW structure and correlation order in condensed-matter physics using cryo-TEM.
RESUMO
An atomic-scale ripple structure has been revealed by electron tomography based on sequential projected atomic-resolution images, but it requires harsh imaging conditions with negligible structure evolution of the imaged samples. Here, we demonstrate that the ripple structure in monolayer MoSe2 can be facilely reconstructed from a single-frame scanning transmission electron microscopy (STEM) image collected at designated collection angles. The intensity and shape of each Se2 atomic column in the single-frame projected STEM image are synergistically combined to precisely map the slight misalignments of two Se atoms induced by rippling, which is then converted to three-dimensional (3D) ripple distortions. The dynamics of 3D ripple deformation can thus be directly visualized at the atomic scale by sequential STEM imaging. In addition, the reconstructed images provide the first opportunity for directly testing the validity of the classical theory of thermal fluctuations. Our method paves the way for a 3D reconstruction of a dynamical process in two-dimensional materials with a reasonable temporal resolution.
RESUMO
The traditional solidification/stabilization (S/S) technology, Ordinary Portland Cement (OPC), has been widely criticized due to its poor resistance to chloride and significant carbon emissions. Herein, a S/S strategy based on magnesium potassium phosphate cement (MKPC) was developed for the medical waste incineration fly ash (MFA) disposal, which harmonized the chlorine stabilization rate and potential carbon emissions. The in-situ XRD results indicated that the Cl- was efficiently immobilized in the MKPC system with coexisting Ca2+ by the formation of stable Ca5(PO4)3Cl through direct precipitation or intermediate transformation (the Cl- immobilization rate was up to 77.29%). Additionally, the MFA-based MKPC also demonstrated a compressive strength of up to 39.6 MPa, along with an immobilization rate exceeding 90% for heavy metals. Notably, despite the deterioration of the aforementioned S/S performances with increasing MFA incorporation, the potential carbon emissions associated with the entire S/S process were significantly reduced. According to the Life Cycle Assessment, the potential carbon emissions decreased to 8.35 × 102 kg CO2-eq when the MFA reached the blending equilibrium point (17.68 wt.%), while the Cl- immobilization rate still remained above 65%, achieving an acceptable equilibrium. This work proposes a low-carbon preparation strategy for MKPC that realizes chlorine stabilization, which is instructive for the design of S/S materials.
Assuntos
Compostos de Magnésio , Resíduos de Serviços de Saúde , Metais Pesados , Fosfatos , Compostos de Potássio , Eliminação de Resíduos , Cinza de Carvão , Magnésio , Cálcio , Potássio , Cloro , Carbono , Cloretos , Incineração/métodos , Metais Pesados/análise , Resíduos Sólidos , Material Particulado , Eliminação de Resíduos/métodosRESUMO
Metallo-covalent organic frameworks (metallo-COFs) are organometallic scaffolds in which covalently bonded organic frameworks are interwoven with metal-coordinated pendant groups. Unlike the rigid ligands traditionally used for metal coordination, the utilization of "soft" ligands allows for configurable topology and pore structure in metallo-COFs, particularly when the ligands are generated in situ during dynamic synthesis. In this study, we present the rational synthesis of metallo-COFs based on pyridine-2,6-diimine (pdi), wherein the incorporation of Zn2+ ions and in situ-generated tridentate ligands (pdi) yields metallo-COFs with a square-like lattice. In the absence of Zn2+ ions, a topological isomer COF with a Kagome lattice is instead produced. Thus, the presence or absence of Zn2+ ions allows us to switch between two distinct morphologies corresponding to metallo-COF or COF. In comparison to Brønsted acid-catalyzed COF, which necessitates postmetallization for loading metal ions, the metal-templated COF synthesis method yields COFs with improved crystallinity and approximately 1:1 [Zn2+]/ligand composition. Building upon the metal-templated COF synthesis approach, we successfully synthesized pdiCOF-Zn-2 and pdiCOF-Zn-3, which possess square-like and honeycomb lattices, respectively. The enhanced crystallinity and near 1:1 [Zn2+]/ligand composition of pdiCOF-Zn-3 (honeycomb) facilitate its application as ion transport channels.
RESUMO
Organic-inorganic metal hybrids with their tailorable lattice dimensionality and intrinsic spin-splitting properties are interesting material platforms for spintronic applications. While the spin decoherence process is extensively studied in lead- and tin-based hybrids, these systems generally show short spin decoherence lifetimes, and their correlation with the lattice framework is still not well-understood. Herein, we synthesized magnetic manganese hybrid single crystals of (4-fluorobenzylamine)2MnCl4, ((R)-3-fluoropyrrolidinium)MnCl3, and (pyrrolidinium)2MnCl4, which represent a change in lattice dimensionality from 2D and 1D to 0D, and studied their spin decoherence processes using continuous-wave electron spin resonance spectroscopy. All manganese hybrids exhibit nanosecond-scale spin decoherence time τ2 dominated by the symmetry-directed spin exchange interaction strengths of Mn2+-Mn2+ pairs, which is much longer than lead- and tin-based metal hybrids. In contrast to the similar temperature variation laws of τ2 in 2D and 0D structures, which first increase and gradually drop afterward, the 1D structure presents a monotonous rise of τ2 with the temperatures, indicating the strong correlation of spin decoherence with the lattice rigidity of the inorganic framework. This is also rationalized on the basis that the spin decoherence is governed by the competitive contributions from motional narrowing (prolonging the τ2) and electron-phonon coupling interaction (shortening the τ2), both of which are thermally activated, with the difference that the former is more pronounced in rigid crystalline lattices.
RESUMO
High-concentrated non-flammable electrolytes (HCNFE) in lithium metal batteries prevent thermal runaway accidents, but the microstructure of their solid electrolyte interphase (SEI) remains largely unexplored, due to the lack of direct imaging tools. Herein, cryo-HRTEM is applied to directly visualize the native state of SEI at the atomic scale. In HCNFE, SEI has a uniform laminated crystalline-amorphous structure that can prevent further reaction between the electrolyte and lithium. The inorganic SEI component, Li2 S2 O7 , is precisely identified by cryo-HRTEM. Density functional theory (DFT) calculations demonstrate that the final Li2 S2 O7 phase has suitable natural transmission channels for Li-ion diffusion and excellent ionic conductivity of 1.2 × 10-5 S cm-1 .
RESUMO
BACKGROUND: Plasmodium berghei has been used as a preferred model for studying human malaria, but only a limited number of disease-associated genes of P. berghei have been reported to date. Identification of new disease-related genes as many as possible will provide a landscape for better understanding the pathogenesis of P. berghei. METHODS: Network module analysis method was developed and applied to identify disease-related genes in P. berghei genome. Sequence feature identification, gene ontology annotation, and T-cell epitope analysis were performed on these genes to illustrate their functions in the pathogenesis of P. berghei. RESULTS: 33,314 genes were classified into 4,693 clusters. 4,127 genes shared by six malaria parasites were identified and are involved in many aspects of biological processes. Most of the known essential genes belong to shared genes. A total of 63 clusters consisting of 405 P. berghei genes were enriched in rodent malaria parasites. These genes participate in various stages of parasites such as liver stage development and immune evasion. Combination of these genes might be responsible for P. berghei infecting mice. Comparing with P. chabaudi, none of the clusters were specific to P. berghei. P. berghei lacks some proteins belonging to P. chabaudi and possesses some specific T-cell epitopes binding by class-I MHC, which might together contribute to the occurrence of experimental cerebral malaria (ECM). CONCLUSIONS: We successfully identified disease-associated P. berghei genes by network module analysis. These results will deepen understanding of the pathogenesis of P. berghei and provide candidate parasite genes for further ECM investigation.
Assuntos
Genes Essenciais , Plasmodium berghei , Humanos , Animais , Camundongos , Plasmodium berghei/genética , Ontologia Genética , Evasão da Resposta Imune , Anotação de Sequência MolecularRESUMO
Sargassum biochar has potential advantages as an electrode material due to its natural microscopic pore channels. However, conventional pyrolysis method is prone to thermal damage to the biochar, and incapable to form a complete pore structure resulting in poor biochar electrode performance. In this study, a strategy of microwave pyrolysis coupled with KOH activation was used to prepare nitrogen/phosphorus double-doped graded porous biochar (STC) using ammonium dihydrogen phosphate as dopant. The carbon material STC-1.24-800 prepared by the optimal parameters had a high specific surface area (SSA) of 1367.6 m2 g -1 and a total pore volume of 1.499 cm3 g-1. The precise inside-out heating characteristics of microwave facilitated the generation of suitable meso-micropore distribution ratios in carbon, and the graded porous structure provided abundant active sites for charge accumulation and ion diffusion. The doped nitrogen/phosphorus atoms responding to the microwave field, generated spin to promote microwave absorption, introducing surface structural defects to produce electron density differences. The change in the nature of the electron donor and its electron density enhanced the electrical conductivity and chemical stability of STC. Nitrogen/phosphorus polar surface functional groups improved hydrophilicity and wettability. STC-1.24-800 had a higher specific capacitance of 531 F g-1 and exhibits great cycle performance in capacitive deionization (CDI) applications (1.0 V, 50 mg L-1 Cu2+) as well as adsorption performance (56.16 mg g -1). The present work can provide a novel feasible idea for preparing diatomically doped graded porous biochar for CDI electrode application by microwave irradiation.
Assuntos
Carbono , Nitrogênio , Carbono/química , Porosidade , Micro-Ondas , FósforoRESUMO
Layered ferromagnets with strong magnetic anisotropy energy (MAE) have special applications in nanoscale memory elements in electronic circuits. Here, we report a strain tunability of perpendicular magnetic anisotropy in van der Waals (vdW) ferromagnets VI3 using magnetic circular dichroism measurements. For an unstrained flake, the M-H curve shows a rectangular-shaped hysteresis loop with a large coercivity (1.775 T at 10 K) and remanent magnetization. Furthermore, the coercivity can be enhanced to a maximum of 2.6 T under a 3.8% external in-plane tensile strain. Our DFT calculations show that the increased MAE under strain contributes to the enhancement of coercivity. Meanwhile, the strain tunability on the coercivity of CrI3, with a similar crystal structure, is limited. The main reason is the strong spin-orbit coupling in V3+ in VI6 octahedra in comparison with that in Cr3+. The strain tunability of coercivity in VI3 flakes highlights its potential for integration into vdW heterostructures.
RESUMO
The intrinsic magnetic topological insulator MnBi2Te4 has attracted significant interest recently as a promising platform for exploring exotic quantum phenomena. Here we report that, when atomically thin MnBi2Te4 is deposited on a substrate such as silicon oxide or gold, there is a very strong mechanical coupling between the atomic layer and the supporting substrate. This is manifested as an intense low-frequency breathing Raman mode that is present even for monolayer MnBi2Te4. Interestingly, this coupling turns out to be stronger than the interlayer coupling between the MnBi2Te4 atomic layers. We further found that these low-energy breathing modes are highly sensitive to sample degradation, and they become drastically weaker upon ambient air exposure. This is in contrast to the higher energy optical phonon modes which are much more robust, suggesting that the low-energy Raman modes found here can be an effective indicator of sample quality.
RESUMO
2D material-based heterostructures are constructed by stacking or spicing individual 2D layers to create an interface between them, which have exotic properties. Here, a new strategy for the in situ growth of large numbers of 2D heterostructures on the centimeter-scale substrate is developed. In the method, large numbers of 2D MoS2 , MoO2 , or their heterostructures of MoO2 /MoS2 are controllably grown in the same setup by simply tuning the gap distance between metal precursor and growth substrate, which changes the concentration of metal precursors feed. A lateral force microscope is used first to identify the locations of each material in the heterostructures, which have MoO2 on the top of MoS2 . Noteworthy, the creation of a clean interface between atomic thin MoO2 (metallic) and MoS2 (semiconducting) results in a different electronic structure compared with pure MoO2 and MoS2 . Theoretical calculations show that the charge redistribution at such an interface results in an improved HER performance on the MoO2 /MoS2 heterostructures, showing an overpotential of 60 mV at 10 mA cm-2 and a Tafel slope of 47 mV dec-1 . This work reports a new strategy for the in situ growth of heterostructures on large-scale substrates and provides platforms to exploit their applications.