Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 252(Pt 2): 118919, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631468

RESUMO

The escalation of global water pollution due to emerging pollutants has gained significant attention. To address this issue, catalytic peroxymonosulfate (PMS) activation technology has emerged as a promising treatment approach for effectively decontaminating a wide range of pollutants. Recently, modified biochar has become an increasingly attractive as PMS activator. Metal-heteroatom-co-doped biochar (MH-BC) has emerged as a promising catalyst that can provide enhanced performance over heteroatom-doped and metal-doped biochar due to the synergism between metal and heteroatom in promoting PMS activation. Therefore, this review aims to discuss the fabrication pathways (i.e., internal vs external doping and pre-vs post-modification) and key parameters (i.e., source of precursors, synthesis methods, and synthesis conditions) affecting the performance of MH-BC as PMS activator. Subsequently, an overview of all the possible PMS activation pathways by MH-BC is provided. Subsequently, Also, the detection, identification, and quantification of several reactive species (such as, •OH, SO4•-, O2•-, 1O2, and high valent oxo species) generated in the catalytic PMS system by MH-BC are also evaluated. Lastly, the underlying challenges associated with poor stability, the lack of understanding regarding the interaction between metal and heteroatom during PMS activation and quantification of radicals in multi-ROS system are also deliberated.


Assuntos
Carvão Vegetal , Recuperação e Remediação Ambiental , Peróxidos , Carvão Vegetal/química , Peróxidos/química , Recuperação e Remediação Ambiental/métodos , Catálise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Metais/química
2.
Environ Res ; 252(Pt 3): 118990, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38670214

RESUMO

This study aimed to investigate bone char's physicochemical transformations through co-torrefaction and co-pyrolysis processes with biomass. Additionally, it aimed to analyze the carbon sequestration process during co-torrefaction of bone and biomass and optimize the process parameters of co-torrefaction. Finally, the study sought to evaluate the arsenic sorption capacity of both torrefied and co-torrefied bone char. Bone and biomass co-torrefaction was conducted at 175 °C-300 °C. An orthogonal array of Taguchi techniques and artificial neural networks (ANN) were employed to investigate the influence of various torrefaction parameters on carbon dioxide sequestration within torrefied bone char. A co-torrefied bone char, torrefied at a reaction temperature of 300 °C, a heating rate of 15 °C·min-1, and mixed with 5 g m of biomass (wood dust), was selected for the arsenic (III) sorption experiment due to its elevated carbonate content. The results revealed a higher carbonate fraction (21%) in co-torrefied bone char at 300 °C compared to co-pyrolyzed bone char (500-700 °C). Taguchi and artificial neural network (ANN) analyses indicated that the relative impact of process factors on carbonate substitution in bone char followed the order of co-torrefaction temperature (38.8%) > heating rate (31.06%) > addition of wood biomass (30.1%). Co-torrefied bone chars at 300 °C exhibited a sorption capacity of approximately 3 mg g-1, surpassing values observed for pyrolyzed bone chars at 900 °C in the literature. The findings suggest that co-torrefied bone char could serve effectively as a sorbent in filters for wastewater treatment and potentially fulfill roles such as a remediation agent, pH stabilizer, or valuable source of biofertilizer in agricultural applications.


Assuntos
Arsênio , Biomassa , Carvão Vegetal , Águas Residuárias , Poluentes Químicos da Água , Arsênio/análise , Arsênio/química , Carvão Vegetal/química , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Adsorção , Osso e Ossos/química , Redes Neurais de Computação , Animais , Pirólise
3.
Environ Res ; 246: 118154, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38218520

RESUMO

The management of plastic waste (PW) has become an indispensable worldwide issue because of the enhanced accumulation and environmental impacts of these waste materials. Thermo-catalytic pyrolysis has been proposed as an emerging technology for the valorization of PW into value-added liquid fuels. This review provides a comprehensive investigation of the latest advances in thermo-catalytic pyrolysis of PW for liquid fuel generation, by emphasizing polyethylene, polypropylene, and polystyrene. To this end, the current strategies of PW management are summarized. The various parameters affecting the thermal pyrolysis of PW (e.g., temperature, residence time, heating rate, pyrolysis medium, and plastic type) are discussed, highlighting their significant influence on feed reactivity, product yield, and carbon number distribution of the pyrolysis process. Optimizing these parameters in the pyrolysis process can ensure highly efficient energy recovery from PW. In comparison with non-catalytic PW pyrolysis, catalytic pyrolysis of PW is considered by discussing mechanisms, reaction pathways, and the performance of various catalysts. It is established that the introduction of either acid or base catalysts shifts PW pyrolysis from the conventional free radical mechanism towards the carbonium ion mechanism, altering its kinetics and pathways. This review also provides an overview of PW pyrolysis practicality for scaling up by describing techno-economic challenges and opportunities, environmental considerations, and presenting future outlooks in this field. Overall, via investigation of the recent research findings, this paper offers valuable insights into the potential of thermo-catalytic pyrolysis as an emerging strategy for PW management and the production of liquid fuels, while also highlighting avenues for further exploration and development.


Assuntos
Poliestirenos , Pirólise , Polienos , Polietileno , Plásticos
4.
Environ Res ; 245: 118076, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38160977

RESUMO

Owing to the ever-increasing generation of plastic waste, the need to develop environmentally friendly disposal methods has increased. This study explored the potential of waste plastic straw to generate valuable light olefins and monocyclic aromatic hydrocarbons (MAHs) via catalytic pyrolysis using high-silica zeolite-based catalysts. HZSM-5 (SiO2/Al2O3:200) exhibited superior performance, yielding more light olefins (49.8 wt%) and a higher MAH content than Hbeta (300). This was attributed to the increased acidity and proper shape selectivity. HZSM-5 displayed better coking resistance (0.7 wt%) than Hbeta (4.4 wt%) by impeding secondary reactions, limiting coke precursor formation. The use of HZSM-5 (80) resulted in higher MAHs and lower light olefins than HZSM-5 (200) because of its higher acidity. Incorporation of Co into HZSM-5 (200) marginally lowered light olefin yield (to 44.0 wt%) while notably enhancing MAH production and boosting propene selectivity within the olefin composition. These observations are attributed to the well-balanced coexistence of Lewis and Brønsted acid sites, which stimulated the carbonium ion mechanism and induced H-transfer, cyclization, Diels-alder, and dehydrogenation reactions. The catalytic pyrolysis of plastic straw over high-silica and metal-loaded HZSM-5 catalysts has been suggested as an efficient and sustainable method for transforming plastic waste materials into valuable light olefins and MAHs.


Assuntos
Hidrocarbonetos Aromáticos , Zeolitas , Dióxido de Silício , Pirólise , Temperatura Alta , Biomassa , Alcenos , Catálise , Hidrocarbonetos
5.
Environ Res ; 234: 116553, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37406722

RESUMO

The ubiquitous and refractory benzophenone (BP)-type ultraviolet filters, which are also endocrine disruptors, were commonly detected in the aquatic matrix and could not be efficiently removed by conventional wastewater treatment processes, thus causing extensive concern. Herein, a novel ternary nanocomposite, P-g-CN/α-Bi2O3/WO3 (P-gBW), was successfully fabricated by mixing cocalcinated components and applied to the decomposition of BP-type ultraviolet filters. The dual-Z-scheme heterostructure of P-gBW enhances visible-light absorption, efficiently facilitates separation and mobility, and prolongs the lifetime of photoinduced charge carriers via double charge transfer mechanisms. The optimum 95 wt% P-gBW exhibited excellent photocatalytic activity, degrading 96% 4-hydroxy benzophenone (4HBP) within 150 min and 93% 2,2',4,4'-tetrahydroxybenzophenone (BP-2) within 100 min under visible-light illumination, respectively. The pseudo-first-order rate constant of 4HBP (1.15 h-1) was 6.8-, 3.1-, 3.3- and 2.2-fold higher than those of WO3, P-g-CN, α-Bi2O3, and P-g-CN/α-Bi2O3, respectively, while that of BP-2 (1.71 h-1) was 5.2-, 2.2-, 3.2- and 1.5-fold higher, respectively. The improved photocatalytic degradation was attributed to efficient photoinduced charge carrier separation and migration and prevented the recombination of electron holes, as verified by photoluminescence, transient photocurrent response, and electrochemical impedance spectroscopy. Trapping experiments, electron paramagnetic resonance, and band energy position indicated an efficient dual-Z-scheme heterostructure.


Assuntos
Benzofenonas , Luz , Iluminação , Espectroscopia de Ressonância de Spin Eletrônica
6.
Int J Phytoremediation ; 25(2): 146-160, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35475946

RESUMO

In this study, we used a simple and low-toxicity chemical treatment to make a carboxylate-functionalized dragon fruit peel powder (CF-DFPP) from dragon fruit peel to improve its capacity for adsorbing Rhodamine B (RhB) from an aqueous medium. Field Emission-Scanning Electron Microscopy/Energy-Dispersive X-ray (FE-SEM/EDX), point of zero charges (pHPZC), Brunauer-Emmett-Teller (BET), and Fourier Transform Infrared (FT-IR) analyses were performed to characterize the adsorbent materials. The adsorption performance and mechanism for the removal of RhB were examined. The kinetic, isotherm and thermodynamic parameters were employed to evaluate the adsorption mechanism. Compared to other models, the Langmuir isotherm and PSO kinetic models better defined the experimental data. CF-DFPP adsorbent exhibited a maximum adsorption efficiency of 228.7 mg/g at 298 K for RhB adsorption. Thermodynamic analysis revealed that the adsorption of RhB by CF-DFPP was spontaneous (ΔGo < 0) and exothermic (ΔHo < 0) nature of the process. Different eluting agents were used in desorption tests, and NaOH was revealed to have greater desorption efficiency (96.8%). Furthermore, regeneration examinations revealed that the biosorbent could effectively retain RhB, even after six adsorption/desorption cycles. These findings demonstrated that the CF-DFPP might be a novel material for removing RhB from an aqueous medium.


Assuntos
Frutas , Poluentes Químicos da Água , Pós/análise , Frutas/química , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier , Biodegradação Ambiental , Termodinâmica , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
7.
Artigo em Inglês | MEDLINE | ID: mdl-36899452

RESUMO

Occurrence of trimethoprim (TMP), recalcitrant antibiotic, and its adverse effect on ecosystem have been reported in several countries. The study aims to remove the TMP and its phytotoxicity via a UV/chlorine process, compared with chlorination and UV irradiation alone. Various treatment conditions including chlorine doses, pHs, and TMP concentrations was conducted with synthetic waters and effluent waters. The UV/chlorine process exhibited a synergistic effect on the TMP removal, compared with chlorination and UV irradiation alone. The UV/chlorine process was the most effective in removing TMP, followed by chlorination. The UV irradiation slightly affected the TMP removal (less than 5%). The UV/chlorine process completely removed TMP by 15 min contact time, while chlorination for 60 min could achieve 71% of TMP removal. The TMP removal fitted well with the pseudo first-order kinetics, and the rate constant (k') increased with higher chlorine doses, lower TMP concentrations and low pH. HO• was the major oxidant affecting the TMP removal and its degradation rate, compared with other reactive chlorine species (e.g., Cl•, OCl•). The TMP exposure increased the phytotoxicity by decreasing a germination rate of Lactuca sativa and Vigna radiata seeds. The use of UV/chlorine process could effectively detoxify the TMP, resulting in the phytotoxicity level of treated waters equivalent or lower than those of TMP-free effluent water. The detoxification level depended on the TMP removal, and it was about 0.43-0.56 times of TMP removal. The findings indicated the potential use of UV/chlorine process in removing TMP residual and its phytotoxicity.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cloro/análise , Trimetoprima/toxicidade , Ecossistema , Oxirredução , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Halogenação , Raios Ultravioleta , Cinética
8.
Environ Res ; 213: 113560, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35644496

RESUMO

In this study, the effects of CO2 thermochemical agent and a metal oxide catalyst (Co3O4) on thermochemical banner waste conversion were explored. The results revealed that compared to the non-catalytic conversion of banner waste under N2 environment, the conversion under CO2 yielded more non-condensable gases owing to an enhanced thermal cracking of volatiles. In addition, the CO and CH4 yields at >700 °C in CO2 increased considerably owing to the reverse water-gas shift reaction and CO2 methanation. The CO2 agent reduced the yields of condensables (e.g., benzoic acids, phthalic acids, esters, biphenyls, fluorenes) and decomposition residue (e.g., char and wax), which could be attributed to the enhancement of the thermal cracking of volatiles evolved during the banner waste conversion by CO2 and the C-H and O-H bonds present in the feedstock. In addition, the Co3O4 catalyst promoted the decarboxylation reaction under N2 environment, whereas it promoted the methanation and reverse water-gas shift reaction under CO2. This indicates that compared to the non-catalytic CO2-assisted banner waste conversion, the use of CO2 for the conversion of banner waste in the presence of Co3O4 significantly increased the yields of CH4 and CO. Furthermore, Co3O4 promoted the thermal cracking of polyester bond, thus decreasing the yields of long-chain chemical compounds. In addition, the simultaneous use of Co3O4 catalyst and CO2 agent minimized the formation of char and wax. For all cases (N2 versus CO2, non-catalytic versus catalytic), an increase in temperature enhanced the total permanent gas yield and decreased the yields of condensables, char, and wax. The findings of this study revealed the importance of the synergistic use of Co3O4 catalyst and CO2 agent for the plastic waste upcycling, such as banner waste.


Assuntos
Dióxido de Carbono , Plásticos , Cobalto , Gases , Óxidos , Água
9.
Int J Phytoremediation ; 24(2): 131-144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34057865

RESUMO

NOVELTY STATEMENT: In the modern era, dyes are inevitable and their surging usage leads to colossal contamination of aqueous streams, thereby threatening both the land and aquatic species. One among such dye is anionic Reactive Red 195 (RR 195), and traceable even at minute concentrations of aqueous streams, posing a severe threat to living species. Moreover, RR 195 is highly recalcitrant offering resistance to biodegradation due to the presence of an azo (-N=N-) group within its structure. Thus, there is a definite need to address the issue of eliminating RR 195 from industrial wastewater effluents. In lieu of this, the primitive objective of this study is to test the effectiveness of the natural adsorbent lotus leaf (Nelumbo nucifera) for the selective sorption of RR 195 from the aqueous stream. Although ample literature is available on the direct utilization of lotus leaf as adsorbent, yet no study was performed on the chemical modification (dimethylamine) of the aforementioned adsorbent. Hence, an attempt has been made in this direction to add a new sorbent into the adsorbents database.


Assuntos
Lotus , Nelumbo , Poluentes Químicos da Água , Adsorção , Compostos Azo , Biodegradação Ambiental , Dimetilaminas , Concentração de Íons de Hidrogênio , Cinética , Naftalenossulfonatos , Folhas de Planta/química , Pós , Termodinâmica , Poluentes Químicos da Água/análise
10.
Water Sci Technol ; 85(5): 1522-1537, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35290229

RESUMO

Although in a critical position in the economy, the paper industry releases a lot of wastewater that requires adequate treatment for sustainable development. This study presents an application of Life cycle assessment (LCA) with the ReCiPe tool on the wastewater treatment plant (WWTP) of a paper factory in Vietnam to evaluate the environmental effect of the individual techniques in WWTP, especially the internal circulation (IC) reactor, a pioneer and practical anaerobic technology. Both Midpoint and Endpoint categories results demonstrated that chemical use and electricity consumption mainly contributed to the environmental impact in the WWTP. The Dissolved air flotation (DAF) and Moving bed biofilm reactor (MBBR) are classified as effective techniques to reduce the impacts on the environment. Moreover, the comparison of LCA between IC and up-flow anaerobic sludge bed (UASB) shows that IC is the better practically green technique for the environment.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Animais , Biofilmes , Reatores Biológicos , Estágios do Ciclo de Vida , Vietnã , Eliminação de Resíduos Líquidos/métodos
11.
Langmuir ; 37(31): 9490-9503, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34333977

RESUMO

Randomly arranged inclined irregular nanostructure-covered blue-tailed forest hawk dragonfly wings are highly transparent for wide viewing angles. Inspired by the dragonfly wings, monolayer silica colloids are self-assembled on shape memory polymer-coated substrates and utilized as plasma etching masks to pattern disorderly arranged inclined irregular conical structures. The structures build gradual refractive index transitions at various angles of incidences, resulting in omnidirectional antireflection performance over the whole visible wavelength region. In comparison with a bare substrate, the optimized structure-covered substrate presents 10% higher optical transmission at 0° and even 41% higher optical transmission at an angle of incidence of 75°. Importantly, by manipulating the structural configuration of the shape memory polymer-based structures, the corresponding antireflection characteristics can be instantaneously and reversibly eliminated and recovered after drying out of common household liquids or applying contact pressures in ambient environments. The tunable omnidirectional antireflection coatings are prospective candidates for realizing optical modulation, which exhibits an enormous application value in smart windows, intelligent display screens, optical components, and novel optoelectronic devices.

12.
Sensors (Basel) ; 21(21)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34770353

RESUMO

Climacteric fruits are harvested before they are ripened to avoid adverse damages during transport. The unripe fruits can undergo ripening processes associated with rind color changes on exposure to ethanol vapors. Although rind coloration is a common indicator showing fruit maturity, the attribute does not provide reliable assessment of maturity especially for melons. Herein, we report the achievement of sensitive and reversible melon maturity detection using macroporous hydrogel photonic crystals self-assembled by a roll-to-roll compatible doctor-blade-coating technology. The consumption of applied ethanol vapor during melon ripening results in less condensation of ethanol vapor in the pores (250 nm in diameter), leading to a distinct blue-shift of the optical stop band from 572 to 501 nm and an obvious visual colorimetric readout from yellow green to blue. Moreover, the dependence of the color change on Brix value within the melon has also been evaluated in the study.


Assuntos
Cucurbitaceae , Frutas
13.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339183

RESUMO

This review presents the latest developments in (bio)degradable approaches and functional aliphatic polyesters and polycarbonates prepared by typical ring-opening polymerization (ROP) of lactones and trimethylene carbonates. It also considers several recent innovative synthetic methods including radical ring-opening polymerization (RROP), atom transfer radical polyaddition (ATRPA), and simultaneous chain- and step-growth radical polymerization (SCSRP) that produce aliphatic polyesters. With regard to (bio)degradable approaches, we have summarized several representative cleavable linkages that make it possible to obtain cleavable polymers. In the section on functional aliphatic polyesters, we explore the syntheses of specific functional lactones, which can be performed by ring-opening copolymerization of typical lactone/lactide monomers. Last but not the least, in the recent innovative methods section, three interesting synthetic methodologies, RROP, ATRPA, and SCSRP are discussed in detail with regard to their reaction mechanisms and polymer functionalities.


Assuntos
Plásticos Biodegradáveis/síntese química , Técnicas de Química Sintética/métodos , Polimerização , Poliésteres/síntese química
14.
Mol Pharm ; 16(2): 709-723, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30589552

RESUMO

Poly[2-( tert-butylaminoethyl) methacrylate] (PTA), an important class of antimicrobial polymers, has demonstrated its great biocidal efficiency, favorable nontoxicity, and versatile applicability. To further enhance its antimicrobial efficiency, an optimization of the chemical structure of PTA polymers is performed via atom transfer radical polymerization (ATRP) in terms of the antimicrobial ability against Escherichia coli ( E. coli) and Staphylococcus aureus ( S. aureus). After the optimization, the resulting PTA is blended into a polylactide (PLA) matrix to form PTA/PLA composite thin films. It is first found, that the antimicrobial efficiency of PTA/PLA composites was significantly enhanced by controlling the PLA crystallinity and the PLA spherulite size. A possible mechanistic route regarding this new finding has been rationally discussed. Lastly, the cytotoxicity and mechanical properties of a PTA/PLA composite thin film exhibiting the best biocidal effect are evaluated for assessing its potential as a new material for creating antimicrobial biomedical devices.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Nanocompostos/química , Poliésteres/química , Polímeros/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
15.
Environ Sci Technol ; 53(16): 9771-9780, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31314497

RESUMO

Metal-free heterogeneous catalysts are receiving more and more attention for wastewater remediation by activating peroxymonosulfate (PMS) due to their environmental benign. However, carbon-based materials as the most typical metal-free heterogeneous always suffer from poor durability. Inspired by the fact that a conjugated system may facilitate the electron transfer during PMS activation, we innovatively select polyaniline (PANI) as a new PMS activator and investigate its catalytic performance in detail. It is found that PANI can display better catalytic performance than traditional metal-based catalysts and popular N-doped carbocatalysts in methyl orange (MO) degradation. More importantly, PANI is not only universal for various pollutants degradation but also maintains its catalytic performance in repeated degradation experiments. The stable N sites in the conjugated chains and the oxidation-resistance benzene rings as the building units are considered to be responsible for such an excellent durability. In addition, the influences of some routine factors and actual water backgrounds are comprehensively checked and analyzed. The quenching experiments and electron paramagnetic resonance confirm that MO degradation is achieved through both radical and nonradical pathways, where SO4•- and 1O2 are primary reactive species. The reaction mechanism is also proposed with the assistance of X-ray photoelectron spectroscopy.


Assuntos
Poluentes Ambientais , Compostos de Anilina , Metais , Peróxidos
16.
Water Environ Res ; 90(2): 144-154, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29348001

RESUMO

To investigate effects of modification of MOFs on removal of acid dyes via adsorption and photodegradation, zirconium-based MOF, UiO-66, and its derivatives were synthesized. UiO-66 derivatives were prepared by using amine (NH2)-containing ligand and incorporating carbon nanotubes (CNTs) and reduced graphene oxide (RGO). During the synthesis UiO-66-NH2, UiO-66-CNT and UiO-66-RGO, were obtained, respectively. While UiO-66-NH2 showed the enhanced adsorption capacity for acid dyes owing to the electrostatic attraction, CNTs were found to be the most effective addition to enhance the adsorption of acid dyes. However, the addition of RGO in UiO-66 (to form UiO-66-RGO) exhibited the highest removal efficiency via photodegradation compared to UiO-66 and other derivatives probably attributed to its unique layered morphology. The presence of NH2, CNTs and RGO not only significantly improved the adsorption capacity for acid dyes but also enabled these UiO-66 derivatives to exhibit photocatalytic activity under visible light irradiation.


Assuntos
Corantes/química , Estruturas Metalorgânicas/química , Modelos Químicos , Poluentes Químicos da Água/química , Adsorção , Nanotubos de Carbono/química , Zircônio/química
17.
Langmuir ; 32(48): 12869-12875, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27934524

RESUMO

This study reports a self-assembly technology for fabricating retroreflection coatings with hierarchical nano-/microstructures, which are inspired by the binary periodic structures found in the compound eyes of insects. Silica colloidal crystals of adjustable thicknesses are assembled on encountering glass microbeads using a Langmuir-Blodgett-like approach in a layer-by-layer manner. The as-assembled hierarchical structures exhibit a brilliant color caused by Bragg diffraction from the crystalline lattice of silica colloidal crystals on glass microbeads. The resultant coating is capable of reflecting light in the opposite direction of the incident light. Moreover, the dependence of the silica particle size, the colloidal crystal thickness, and the incident angle on the retroreflective properties are investigated in this study.

19.
ChemSusChem ; : e202401070, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984837

RESUMO

Renewable chemicals, which are made from renewable resources such as biomass, have attracted significant interest as substitutes for natural gas- or petroleum-derived chemicals to enhance the sustainability of the chemical and petrochemical industries. Polybutylene adipate terephthalate (PBAT), which is a copolyester of 1,4-butanediol (1,4-BDO), adipic acid (AA), and dimethyl terephthalate (DMT) or terephthalic acid (TPA), has garnered significant interest as a biodegradable polymer. This study assesses the non-biological production of PBAT monomers from biomass feedstocks via heterogeneous catalytic reactions. The biomass-based catalytic routes to each monomer are analyzed and compared to conventional routes. Although no fully commercialized catalytic processes for direct conversion of biomass into 1,4-BDO, AA, DMT, and TPA are available, emerging and promising catalytic routes have been proposed. The proposed biomass-based catalytic pathways toward 1,4-BDO, AA, DMT, and TPA are not yet fully competitive with conventional fossil fuel-based pathways mainly due to high feedstock prices and the existence of other alternatives. However, given continuous technological advances in the renewable production of PBAT monomers, bio-based PBAT should be economically viable in the near future.

20.
J Hazard Mater ; 479: 135536, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39191015

RESUMO

This study investigated the influence of photoaging on a nanoscale metal-organic framework (MOF), truncated rhombic dodecahedron nano-zeolitic imidazolate framework-8 (nZIF-8), focusing on its oxidative stress, inflammation, and implications for pulmonary diseases. We observed significant photodegradation-induced transformations in nZIF-8, characterized by a reduction in particle size from 200.5 to 101.4 nm and notable structural disintegration after prolonged exposure to simulated solar radiation. This alteration resulted in a marked decrease in oxidative cytotoxicity in BEAS-2B cells, which was attributed to changes in surface properties and reduced reactive oxygen species (ROS) production. Gene expression analysis further revealed a decrease in cytotoxic and inflammatory responses, which potentially lowers the risk of chronic obstructive pulmonary disease (COPD). Aged nZIF-8 also showed diminished capacity to induce pro-inflammatory cytokines and influence COPD-related gene expression, reducing its potential to exacerbate COPD pathogenesis. Our findings highlight the critical need for comprehensive safety evaluations of these materials, while considering their long-term environmental and biological impacts. The diminished cytotoxicity and inflammatory potential of aged nZIF-8 highlighted its enhanced suitability for broader applications, indicating that photoaging may lead to safer and more sustainable material utilization.


Assuntos
Estruturas Metalorgânicas , Estresse Oxidativo , Espécies Reativas de Oxigênio , Zeolitas , Humanos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/toxicidade , Estruturas Metalorgânicas/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Estresse Oxidativo/efeitos dos fármacos , Zeolitas/química , Zeolitas/toxicidade , Imidazóis/toxicidade , Imidazóis/química , Sobrevivência Celular/efeitos dos fármacos , Fotólise , Citocinas/metabolismo , Tamanho da Partícula , Nanopartículas/toxicidade , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA