Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Neuroimage ; 289: 120549, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382864

RESUMO

The directional organization of multiple nociceptive regions, particularly within obscure operculoinsular areas, underlying multidimensional pain processing remains elusive. This study aims to establish the fundamental organization between somatosensory and insular cortices in routing nociceptive information. By employing an integrated multimodal approach of high-field fMRI, intracranial electrophysiology, and transsynaptic viral tracing in rats, we observed a hierarchically organized connection of S1/S2 → posterior insula → anterior insula in routing nociceptive information. The directional nociceptive pathway determined by early fMRI responses was consistent with that examined by early evoked LFP, intrinsic effective connectivity, and anatomical projection, suggesting fMRI could provide a valuable facility to discern directional neural circuits in animals and humans non-invasively. Moreover, our knowledge of the nociceptive hierarchical organization of somatosensory and insular cortices and the interface role of the posterior insula may have implications for the development of targeted pain therapies.


Assuntos
Córtex Insular , Imageamento por Ressonância Magnética , Humanos , Ratos , Animais , Imageamento por Ressonância Magnética/métodos , Nociceptividade/fisiologia , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/fisiologia , Mapeamento Encefálico , Dor
2.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36361595

RESUMO

As powerful tools for local gene delivery, adeno-associated viruses (AAVs) are widely used for neural circuit studies and therapeutical purposes. However, most of them have the characteristics of large diffusion range and retrograde labeling, which may result in off-target transduction during in vivo application. Here, in order to achieve precise gene delivery, we screened AAV serotypes that have not been commonly used as gene vectors and found that AAV13 can precisely transduce local neurons in the brain, with a smaller diffusion range than AAV2 and rigorous anterograde labeling. Then, AAV13-based single-viral and dual-viral strategies for sparse labeling of local neurons in the brains of C57BL/6 or Cre transgenic mice were developed. Additionally, through the neurobehavioral test in the ventral tegmental area, we demonstrated that AAV13 was validated for functional monitoring by means of carrying Cre recombinase to drive the expression of Cre-dependent calcium-sensitive indicator. In summary, our study provides AAV13-based toolkits for precise local gene delivery, which can be used for in situ small nuclei targeting, sparse labeling and functional monitoring.


Assuntos
Dependovirus , Vetores Genéticos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Dependovirus/metabolismo , Vetores Genéticos/genética , Técnicas de Transferência de Genes , Camundongos Transgênicos , Transdução Genética
3.
Hum Brain Mapp ; 42(15): 5010-5022, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34288264

RESUMO

The investigation of neural circuits is important for interpreting both healthy brain function and psychiatric disorders. Currently, the architecture of neural circuits is always investigated with fluorescent protein encoding neurotropic virus and ex vivo fluorescent imaging technology. However, it is difficult to obtain a whole-brain neural circuit connection in living animals, due to the limited fluorescent imaging depth. Herein, the noninvasive, whole-brain imaging technique of MRI and the hypotoxicity virus vector AAV (adeno-associated virus) were combined to investigate the whole-brain neural circuits in vivo. AAV2-retro are an artificially-evolved virus vector that permits access to the terminal of neurons and retrograde transport to their cell bodies. By expressing the ferritin protein which could accumulate iron ions and influence the MRI contrast, the neurotropic virus can cause MRI signal changes in the infected regions. For mice injected with the ferritin-encoding virus vector (rAAV2-retro-CAG-Ferritin) in the caudate putamen (CPu), several regions showed significant changes in MRI contrasts, such as PFC (prefrontal cortex), HIP (hippocampus), Ins (insular cortex) and BLA (basolateral amygdala). The expression of ferritin in those regions was also verified with ex vivo fluorescence imaging. In addition, we demonstrated that changes in T2 relaxation time could be used to identify the spread area of the virus in the brain over time. Thus, the neural connections could be longitudinally detected with the in vivo MRI method. This novel technique could be utilized to observe the viral infection process and detect the neural circuits in a living animal.


Assuntos
Encéfalo/diagnóstico por imagem , Dependovirus , Ferritinas , Vetores Genéticos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Animais , Encéfalo/metabolismo , Camundongos
4.
Neuroimage ; 197: 133-142, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31022567

RESUMO

The elucidation of neural networks is essential to understanding the mechanisms of brain functions and brain disorders. Neurotropic virus-based trans-synaptic tracing tools have become an effective method for dissecting the structure and analyzing the function of neural-circuitry. However, these tracing systems rely on fluorescent signals, making it hard to visualize the panorama of the labeled networks in mammalian brain in vivo. One MRI method, Diffusion Tensor Imaging (DTI), is capable of imaging the networks of the whole brain in live animals but without information of anatomical connections through synapses. In this report, a chimeric gene coding for ferritin and enhanced green fluorescent protein (EGFP) was integrated into Vesicular stomatitis virus (VSV), a neurotropic virus that is able to spread anterogradely in synaptically connected networks. After the animal was injected with the recombinant VSV (rVSV), rVSV-Ferritin-EGFP, into the somatosensory cortex (SC) for four days, the labeled neural-network was visualized in the postmortem whole brain with a T2-weighted MRI sequence. The modified virus transmitted from SC to synaptically connected downstream regions. The results demonstrate that rVSV-Ferritin-EGFP could be used as a bimodal imaging vector for detecting synaptically connected neural-network with both ex vivo MRI and fluorescent imaging. The strategy in the current study has the potential to longitudinally monitor the global structure of a given neural-network in living animals.


Assuntos
Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética , Neurônios/citologia , Córtex Somatossensorial/citologia , Vesiculovirus/fisiologia , Animais , Ferritinas/genética , Vetores Genéticos/genética , Vetores Genéticos/fisiologia , Proteínas de Fluorescência Verde/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/citologia , Vias Neurais/virologia , Neurônios/virologia , Córtex Somatossensorial/virologia , Vesiculovirus/genética
5.
Arch Insect Biochem Physiol ; 88(3): 155-67, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25348706

RESUMO

Apolipophorin-III (ApoLp-III) acts in lipid transport, lipoprotein metabolism, and innate immunity in insects. In this study, an ApoLp-III gene of Antheraea pernyi pupae (Ap-ApoLp-III) was isolated and characterized. The full-length cDNA of Ap-ApoLp-III is 687 bp, including a 5'-untranslated region (UTR) of 40 bp, 3'-UTR of 86 bp and an open reading frame of 561 bp encoding a polypeptide of 186 amino acids that contains an Apolipophorin-III precursor domain (PF07464). The deduced Ap-apoLp-III protein sequence has 68, 59, and 23% identity with its orthologs of Manduca sexta, Bombyx mori, and Aedes aegypti, respectively. Phylogenetic analysis showed that the Ap-apoLp-III was close to that of Bombycoidea. qPCR analysis revealed that Ap-ApoLp-III expressed during the four developmental stages and in integument, fat body, and ovaries. After six types of microorganism infections, expression levels of the Ap-ApoLp-III gene were upregulated significantly at different time points compared with control. RNA interference (RNAi) of Ap-ApoLp-III showed that the expression of Ap-ApoLp-III was significantly downregulated using qPCR after injection of E. coli. We infer that the Ap-ApoLp-III gene acts in the innate immunity of A. pernyi.


Assuntos
Apolipoproteínas/genética , Imunidade Inata , Mariposas/genética , Sequência de Aminoácidos , Animais , Apolipoproteínas/biossíntese , Apolipoproteínas/imunologia , Sequência de Bases , DNA Complementar , Feminino , Estágios do Ciclo de Vida , Masculino , Dados de Sequência Molecular , Mariposas/imunologia , Mariposas/microbiologia , Fases de Leitura Aberta , Filogenia , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Regiões não Traduzidas
6.
Zool Res ; 45(4): 781-790, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38894521

RESUMO

Precise targeting of specific regions within the central nervous system (CNS) is crucial for both scientific research and gene therapy in the context of brain diseases. Adeno-associated virus 13 (AAV13) is known for its restricted diffusion range within the CNS, making it an ideal choice for precise labeling and administration within small brain regions. However, AAV13 mediates relatively low expression of target genes. Here, we introduced specifically engineered modifications to the AAV13 capsid protein to enhance its transduction efficiency. We first constructed AAV13-YF by mutating tyrosine to phenylalanine on the surface of the AAV13 capsid. We then inserted the 7m8 peptide, known to enhance cell transduction, into positions 587/588 and 585/586 of the AAV13 capsid, resulting in two distinct variants named AAV13-587-7m8 and AAV13-585-7m8, respectively. We found that AAV13-YF exhibited superior in vitro infectivity in HEK293T cells compared to AAV13, while AAV13-587-7m8 and AAV13-585-7m8 showed enhanced CNS infection capabilities in C57BL/6 mice, with AAV13-587-7m8 infection retaining a limited spread range. These modified AAV13 variants hold promising potential for applications in gene therapy and neuroscience research.


Assuntos
Dependovirus , Camundongos Endogâmicos C57BL , Dependovirus/genética , Animais , Humanos , Camundongos , Células HEK293 , Transdução Genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo
7.
J Invertebr Pathol ; 114(3): 313-23, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24076149

RESUMO

Insects possess an innate immune system that responds to invading microorganisms. In this study, a subtractive cDNA library was constructed to screen for immune response-related genes in the fat bodies of Antheraea pernyi (Lepidoptera: Saturniidae) pupa challenged with Escherichia coli. Four hundred putative EST clones were identified by suppression subtractive hybridization (SSH), including 50 immune response-related genes, three cytoskeleton genes, eight cell cycle and apoptosis genes, five respiration and energy metabolism genes, five transport genes, 40 metabolism genes, ten stress response genes, four transcription and translation regulation genes and 77 unknown genes. To verify the reliability of the SSH data, the transcription of a set of randomly selected immune response-related genes were confirmed by semi-quantitative reverse transcription-PCR (RT-PCR) and real-time quantitative reverse transcription-PCR (qRT-PCR). These identified immune response-related genes provide insight into understanding the innate immunity in A. pernyi.


Assuntos
Bombyx/imunologia , Genes de Insetos , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Bombyx/microbiologia , Escherichia coli/imunologia , Corpo Adiposo/metabolismo , Biblioteca Gênica , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência
8.
Neural Regen Res ; 18(8): 1827-1833, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36751812

RESUMO

Analyzing the structure and function of the brain's neural network is critical for identifying the working principles of the brain and the mechanisms of brain diseases. Recombinant rabies viral vectors allow for the retrograde labeling of projection neurons and cell type-specific trans-monosynaptic tracing, making these vectors powerful candidates for the dissection of synaptic inputs. Although several attenuated rabies viral vectors have been developed, their application in studies of functional networks is hindered by the long preparation cycle and low yield of these vectors. To overcome these limitations, we developed an improved production system for the rapid rescue and preparation of a high-titer CVS-N2c-ΔG virus. Our results showed that the new CVS-N2c-ΔG-based toolkit performed remarkably: (1) N2cG-coated CVS-N2c-ΔG allowed for efficient retrograde access to projection neurons that were unaddressed by rAAV9-Retro, and the efficiency was six times higher than that of rAAV9-Retro; (2) the trans-monosynaptic efficiency of oG-mediated CVS-N2c-ΔG was 2-3 times higher than that of oG-mediated SAD-B19-ΔG; (3) CVS-N2c-ΔG could delivery modified genes for neural activity monitoring, and the time window during which this was maintained was 3 weeks; and (4) CVS-N2c-ΔG could express sufficient recombinases for efficient transgene recombination. These findings demonstrate that new CVS-N2c-ΔG-based toolkit may serve as a versatile tool for structural and functional studies of neural circuits.

9.
Viruses ; 15(4)2023 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-37112829

RESUMO

Adeno-associated viruses (AAVs) have become safe and effective tools for therapeutic in vivo gene drug delivery. Among many AAV serotypes, AAV2 is the most well-characterized. Although many studies have been carried out on the engineering of the capsid VR-VIII region, few attempts have been made in the VR-IV region. Here, we targeted amino acid positions 442-469 of the VR-IV region and established an engineering paradigm of computer-aided directed evolution, based on training samples from previous datasets, to obtain a viral vector library with high diversity (~95,089). We further examined two variants selected from the library. The transduction efficiency of these two novel AAV variants, AAV2.A1 and AAV2.A2, in the central nervous system was 10-15 times higher than that of AAV2. This finding provides new vehicles for delivering gene drugs to the brain.


Assuntos
Proteínas do Capsídeo , Capsídeo , Transdução Genética , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Terapia Genética , Biblioteca Gênica , Dependovirus/fisiologia , Vetores Genéticos/genética
10.
Pathogens ; 12(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37375504

RESUMO

Herpes simplex virus type 1 (HSV-1) is a leading cause of encephalitis and infectious blindness. The commonly used clinical therapeutic drugs are nucleoside analogues such as acyclovir. However, current drugs for HSV cannot eliminate the latent virus or viral reactivation. Therefore, the development of new treatment strategies against latent HSV has become an urgent need. To comprehensively suppress the proliferation of HSV, we designed the CLEAR strategy (coordinated lifecycle elimination against viral replication). VP16, ICP27, ICP4, and gD-which are crucial genes that perform significant functions in different stages of the HSV infection lifecycle-were selected as targeting sites based on CRISPR-Cas9 editing system. In vitro and in vivo investigations revealed that genome editing by VP16, ICP27, ICP4 or gD single gene targeting could effectively inhibit HSV replication. Moreover, the combined administration method (termed "Cocktail") showed superior effects compared to single gene editing, which resulted in the greatest decrease in viral proliferation. Lentivirus-delivered CRISPR-Cas9/gRNA editing could effectively block HSV replication. The CLEAR strategy may provide new insights into the potential treatment of refractory HSV-1-associated diseases, particularly when conventional approaches have encountered resistance.

11.
Nat Commun ; 14(1): 3792, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365155

RESUMO

Viral tracers that enable efficient retrograde labeling of projection neurons are powerful vehicles for structural and functional dissections of the neural circuit and for the treatment of brain diseases. Currently, some recombinant adeno-associated viruses (rAAVs) based on capsid engineering are widely used for retrograde tracing, but display undesirable brain area selectivity due to inefficient retrograde transduction in certain neural connections. Here we developed an easily editable toolkit to produce high titer AAV11 and demonstrated that it exhibits potent and stringent retrograde labeling of projection neurons in adult male wild-type or Cre transgenic mice. AAV11 can function as a powerful retrograde viral tracer complementary to AAV2-retro in multiple neural connections. In combination with fiber photometry, AAV11 can be used to monitor neuronal activities in the functional network by retrograde delivering calcium-sensitive indicator under the control of a neuron-specific promoter or the Cre-lox system. Furthermore, we showed that GfaABC1D promoter embedding AAV11 is superior to AAV8 and AAV5 in astrocytic tropism in vivo, combined with bidirectional multi-vector axoastrocytic labeling, AAV11 can be used to study neuron-astrocyte connection. Finally, we showed that AAV11 allows for analyzing circuit connectivity difference in the brains of the Alzheimer's disease and control mice. These properties make AAV11 a promising tool for mapping and manipulating neural circuits and for gene therapy of some neurological and neurodegenerative disorders.


Assuntos
Astrócitos , Neurônios , Camundongos , Masculino , Animais , Camundongos Transgênicos , Interneurônios , Encéfalo , Dependovirus/genética , Vetores Genéticos/genética
12.
Mol Brain ; 15(1): 13, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093138

RESUMO

Retrograde tracers based on viral vectors are powerful tools for the imaging and manipulation of upstream neural networks projecting to a specific brain region, and they play important roles in structural and functional studies of neural circuits. However, currently reported retrograde viral tracers have many limitations, such as brain area selectivity or the inability to retrograde label genetically defined brain-wide projection neurons. To overcome these limitations, a new retrograde tracing method, AAV-PHP.eB assisted retrograde tracing systems (PARTS) based on rabies virus, was established through brain-wide TVA-dependent targeting using an AAV-PHP.eB that efficiently crosses the blood-brain barrier in C57BL/6 J mice, and complementation of EnvA-pseudotyped defective rabies virus that specifically recognizes the TVA receptor. Furthermore, combined with Cre transgenic mice, cell-type-specific PARTS (cPARTS) was developed, which can retrograde label genetically defined brain-wide projection neurons. Our research provides new tools and technical support for the analysis of neural circuits.


Assuntos
Vírus da Raiva , Animais , Encéfalo , Vetores Genéticos , Interneurônios , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vírus da Raiva/genética
13.
Mol Brain ; 13(1): 138, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33054827

RESUMO

Recombinant adeno-associated viruses (rAAVs), particularly those that permit efficient gene transfer to neurons from axonal terminals or across the blood-brain barrier, are useful vehicles for structural and functional studies of the neural circuit and for the treatment of many gene-deficient brain diseases that need to compensate for the correct genes in every cell in the whole brain. However, AAVs with these two advantages have not been reported. Here, we describe a new capsid engineering method, which exploits the combination of different capsids and aims to yield a capsid that can provide more alternative routes of administration that are more suitable for the wide-scale transduction of the central nervous system (CNS). A new AAV variant, AAV9-Retro, was developed by inserting the 10-mer peptide fragment from AAV2-Retro into the capsid of AAV9, and the biodistribution properties were evaluated in mice. By intracranial and intravenous injection in the mice, we found that AAV9-Retro can retrogradely infect projection neurons with an efficiency comparable to that of AAV2-Retro and retains the characteristic of AAV9, which can be transported across the nervous system. Our strategy provides a new tool for the manipulation of neural circuits and future preclinical and clinical treatment of some neurological and neurodegenerative disorders.


Assuntos
Absorção Fisiológica , Axônios/metabolismo , Barreira Hematoencefálica/metabolismo , Dependovirus/metabolismo , Transdução Genética , Administração Intravenosa , Animais , Sequência de Bases , Transporte Biológico , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/virologia , Masculino , Camundongos Endogâmicos C57BL , Tropismo
14.
Mol Brain ; 13(1): 45, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32197632

RESUMO

Understanding the connecting structure of brain network is the basis to reveal the principle of the brain function and elucidate the mechanism of brain diseases. Trans-synaptic tracing with neurotropic viruses has become one of the most effective technologies to dissect the neural circuits. Although the retrograde trans-synaptic tracing for analyzing the input neural networks with recombinant rabies and pseudorabies virus has been broadly applied in neuroscience, viral tools for analyzing the output neural networks are still lacking. The recombinant vesicular stomatitis virus (VSV) has been used for the mapping of synaptic outputs. However, several drawbacks, including high neurotoxicity and rapid lethality in experimental animals, hinder its application in long-term studies of the structure and function of neural networks. To overcome these limitations, we generated a recombinant VSV with replication-related N gene mutation, VSV-NR7A, and examined its cytotoxicity and efficiency of trans-synaptic spreading. We found that by comparison with the wild-type tracer of VSV, the NR7A mutation endowed the virus lower rate of propagation and cytotoxicity in vitro, as well as significantly reduced neural inflammatory responses in vivo and much longer animal survival when it was injected into the nucleus of the mice brain. Besides, the spreading of the attenuated VSV was delayed when injected into the VTA. Importantly, with the reduced toxicity and extended animal survival, the number of brain regions that was trans-synaptically labeled by the mutant VSV was more than that of the wild-type VSV. These results indicated that the VSV-NR7A, could be a promising anterograde tracer that enables researchers to explore more downstream connections of a given brain region, and observe the anatomical structure and the function of the downstream circuits over a longer time window. Our work could provide an improved tool for structural and functional studies of neurocircuit.


Assuntos
Mutação/genética , Sinapses/patologia , Vesiculovirus/genética , Animais , Morte Celular , Linhagem Celular , Vetores Genéticos/metabolismo , Inflamação/patologia , Camundongos Endogâmicos C57BL , Rede Nervosa/patologia , Neurônios/patologia , Área Tegmentar Ventral/patologia
15.
Sci Bull (Beijing) ; 65(14): 1192-1202, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36659149

RESUMO

Duplications of MECP2-containing genomic segments led to severe autistic symptoms in male. Transgenic mice overexpressing the human MECP2 gene exhibit autistic-like behaviors. Neural circuits underlying social defects in MECP2 transgenic (MECP2-TG) mice remain unknown. To observe neural activity of MECP2-TG mice in vivo, we performed calcium imaging by implantation of microendoscope in the hippocampal CA1 regions of MECP2-TG and wild type (WT) mice. We identified neurons whose activities were tightly associated with social interaction, which activity patterns were compromised in MECP2-TG mice. Strikingly, we rescued the social-related neural activity in CA1 and social defects in MECP2-TG mice by deleting the human MECP2 transgene using the CRISPR/Cas9 method during adulthood. Our data points to the neural circuitry responsible for social interactions and provides potential therapeutic targets for autism in adulthood.

16.
Neurosci Bull ; 36(3): 202-216, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31444652

RESUMO

Efficient viral vectors for mapping and manipulating long-projection neuronal circuits are crucial in structural and functional studies of the brain. The SAD strain rabies virus with the glycoprotein gene deleted pseudotyped with the N2C glycoprotein (SAD-RV(ΔG)-N2C(G)) shows strong neuro-tropism in cell culture, but its in vivo efficiency for retrograde gene transduction and neuro-tropism have not been systematically characterized. We compared these features in different mouse brain regions for SAD-RV-N2C(G) and two other widely-used retrograde tracers, SAD-RV(ΔG)-B19(G) and rAAV2-retro. We found that SAD-RV(ΔG)-N2C(G) enhanced the infection efficiency of long-projecting neurons by ~10 times but with very similar neuro-tropism, compared with SAD-RV(ΔG)-B19(G). On the other hand, SAD-RV(ΔG)-N2C(G) had an infection efficiency comparable with rAAV2-retro, but a more restricted diffusion range, and broader tropism to different types and regions of long-projecting neuronal populations. These results demonstrate that SAD-RV(ΔG)-N2C(G) can serve as an effective retrograde vector for studying neuronal circuits.


Assuntos
Giro Denteado , Vetores Genéticos , Glicoproteínas , Rede Nervosa , Técnicas de Rastreamento Neuroanatômico , Vírus da Raiva , Área Tegmentar Ventral , Proteínas Virais , Animais , Linhagem Celular , Cricetinae , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
Mol Ther Methods Clin Dev ; 10: 38-47, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-29988889

RESUMO

Current large-scale recombinant adeno-associated virus (rAAV) production systems based on the baculovirus expression vector (BEV) remain complicated and cost-intensive, and they lack versatility and flexibility. Here we present a novel recombinant baculovirus integrated with all packaging elements for the production of rAAV. To optimize BEV construction, ribosome leaky-scanning mechanism was used to express AAV Rep and Cap proteins downstream of the PH and P10 promoters in the pFast.Bac.Dual vector, respectively, and the rAAV genome was inserted between the two promoters. The yields of rAAV2, rAAV8, and rAAV9 derived from the BEV-infected Sf9 cells exceeded 105 vector genomes (VG) per cell. The BEV was shown to be stable and showed no apparent decrease of rAAV yield after at least four serial passages. The rAAVs derived from the new Bac system displayed high-quality and high-transduction activity. Additionally, rAAV2 could be efficiently generated from BEV-infected beet armyworm larvae at a per-larvae yield of 2.75 ± 1.66 × 1010 VG. The rAAV2 derived from larvae showed a structure similar to the rAAV2 derived from HEK293 cells, and it also displayed high-transduction activity. In summary, the novel BEV is ideally suitable for large-scale rAAV production. Further, this study exploits a potential cost-efficient platform for rAAV production in insect larvae.

18.
J Insect Physiol ; 59(8): 848-54, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23763950

RESUMO

Small heat shock proteins (sHSPs) usually act as molecular chaperones to prevent proteins from being denatured in extreme conditions. We first report the sHSP21 gene, named as Ap-sHSP21, in the Chinese oak silkworm Antheraea pernyi (Lepidoptera: Saturniidae). The full-length cDNA of Ap-sHSP21 is 976 bp, including a 5'-untranslated region (UTR) of 99 bp, a 3'-UTR of 316 bp and an open reading frame (ORF) of 561 bp encoding a polypeptide of 186 amino acids. The deduced A. pernyi sHSP21 protein sequence reveals the percent identity is 82-93% in comparison to other sHSPs from insects. Real-time quantitative reverse transcription-PCR (qRT-PCR) analysis shows that Ap-sHSP21 expression is higher in testis than that in other examined tissues and significantly up-regulated after heat shock. In addition, prokaryotic expression and purification of the Ap-sHSP21 protein were performed. SDS-PAGE and Western blot analysis demonstrated that a 25 kDa recombinant protein was successfully expressed in Escherichia coli cells and the purified recombinant protein was also confirmed to protect restriction enzymes from thermal inactivation. The expression of Ap-sHSP21 was significantly down-regulated after RNA interference, which was confirmed by qRT-PCR and Western blot analysis. All together, these results suggest that Ap-sHSP21 play a key role in thermal tolerance.


Assuntos
Proteínas de Choque Térmico Pequenas/metabolismo , Temperatura Alta , Proteínas de Insetos/metabolismo , Mariposas/metabolismo , Estresse Fisiológico , Sequência de Aminoácidos , Animais , Western Blotting , Feminino , Proteínas de Choque Térmico Pequenas/isolamento & purificação , Proteínas de Insetos/isolamento & purificação , Masculino , Dados de Sequência Molecular , Filogenia , Interferência de RNA , Alinhamento de Sequência , Análise de Sequência de DNA
19.
Gene ; 527(1): 283-91, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23810944

RESUMO

The complete mitochondrial genome (mitogenome) of Diaphania pyloalis (Lepidoptera: Pyralididae) was determined to be 15,298 bp and has the typical gene organization of mitogenomes from lepidopteran insects. It consists of 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes and an A+T-rich region. The A+T content of this mitogenome is 80.83% and the AT skew is slightly positive. All PCGs are initiated by ATN codons, except for cytochrome c oxidase subunit 1 (cox1) gene which is initiated by CGA. Only the cox2 gene has an incomplete stop codon consisting of just a T. All the tRNA genes display a typical clover-leaf structure of mitochondrial tRNA. The A+T-rich region of the mitogenome is 332 bp in length, including several common features found in lepidopteran mitogenomes. Phylogenetic analysis showed that the D. pyloalis is close to Pyralididae.


Assuntos
Genes de Insetos , Genoma Mitocondrial , Mariposas/genética , Animais , Sequência de Bases , Mapeamento Cromossômico , Sequências Repetidas Invertidas , Anotação de Sequência Molecular , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Filogenia , RNA de Transferência/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA