Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
2.
Nat Immunol ; 20(8): 980-991, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31209406

RESUMO

Innate lymphoid cells (ILCs) are tissue-resident lymphocytes categorized on the basis of their core regulatory programs and the expression of signature cytokines. Human ILC3s that produce the cytokine interleukin-22 convert into ILC1-like cells that produce interferon-γ in vitro, but whether this conversion occurs in vivo remains unclear. In the present study we found that ILC3s and ILC1s in human tonsils represented the ends of a spectrum that included additional discrete subsets. RNA velocity analysis identified an intermediate ILC3-ILC1 cluster, which had strong directionality toward ILC1s. In humanized mice, the acquisition of ILC1 features by ILC3s showed tissue dependency. Chromatin studies indicated that the transcription factors Aiolos and T-bet cooperated to repress regulatory elements active in ILC3s. A transitional ILC3-ILC1 population was also detected in the human intestine. We conclude that ILC3s undergo conversion into ILC1-like cells in human tissues in vivo, and that tissue factors and Aiolos were required for this process.


Assuntos
Imunidade Inata/imunologia , Interferon gama/metabolismo , Interleucinas/metabolismo , Mucosa Intestinal/imunologia , Linfócitos/imunologia , Tonsila Palatina/imunologia , Animais , Diferenciação Celular/imunologia , Células Cultivadas , Criança , Pré-Escolar , Humanos , Fator de Transcrição Ikaros/metabolismo , Mucosa Intestinal/citologia , Linfócitos/classificação , Linfócitos/citologia , Camundongos , Proteínas com Domínio T/metabolismo , Interleucina 22
3.
Circulation ; 146(4): 316-335, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35762356

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) are monoclonal antibodies used to activate the immune system against tumor cells. Despite therapeutic benefits, ICIs have the potential to cause immune-related adverse events such as myocarditis, a rare but serious side effect with up to 50% mortality in affected patients. Histologically, patients with ICI myocarditis have lymphocytic infiltrates in the heart, implicating T cell-mediated mechanisms. However, the precise pathological immune subsets and molecular changes in ICI myocarditis are unknown. METHODS: To identify immune subset(s) associated with ICI myocarditis, we performed time-of-flight mass cytometry on peripheral blood mononuclear cells from 52 individuals: 29 patients with autoimmune adverse events (immune-related adverse events) on ICI, including 8 patients with ICI myocarditis, and 23 healthy control subjects. We also used multiomics single-cell technology to immunophenotype 30 patients/control subjects using single-cell RNA sequencing, single-cell T-cell receptor sequencing, and cellular indexing of transcriptomes and epitopes by sequencing with feature barcoding for surface marker expression confirmation. To correlate between the blood and the heart, we performed single-cell RNA sequencing/T-cell receptor sequencing/cellular indexing of transcriptomes and epitopes by sequencing on MRL/Pdcd1-/- (Murphy Roths large/programmed death-1-deficient) mice with spontaneous myocarditis. RESULTS: Using these complementary approaches, we found an expansion of cytotoxic CD8+ T effector cells re-expressing CD45RA (Temra CD8+ cells) in patients with ICI myocarditis compared with control subjects. T-cell receptor sequencing demonstrated that these CD8+ Temra cells were clonally expanded in patients with myocarditis compared with control subjects. Transcriptomic analysis of these Temra CD8+ clones confirmed a highly activated and cytotoxic phenotype. Longitudinal study demonstrated progression of these Temra CD8+ cells into an exhausted phenotype 2 months after treatment with glucocorticoids. Differential expression analysis demonstrated elevated expression levels of proinflammatory chemokines (CCL5/CCL4/CCL4L2) in the clonally expanded Temra CD8+ cells, and ligand receptor analysis demonstrated their interactions with innate immune cells, including monocytes/macrophages, dendritic cells, and neutrophils, as well as the absence of key anti-inflammatory signals. To complement the human study, we performed single-cell RNA sequencing/T-cell receptor sequencing/cellular indexing of transcriptomes and epitopes by sequencing in Pdcd1-/- mice with spontaneous myocarditis and found analogous expansions of cytotoxic clonal effector CD8+ cells in both blood and hearts of such mice compared with controls. CONCLUSIONS: Clonal cytotoxic Temra CD8+ cells are significantly increased in the blood of patients with ICI myocarditis, corresponding to an analogous increase in effector cytotoxic CD8+ cells in the blood/hearts of Pdcd1-/- mice with myocarditis. These expanded effector CD8+ cells have unique transcriptional changes, including upregulation of chemokines CCL5/CCL4/CCL4L2, which may serve as attractive diagnostic/therapeutic targets for reducing life-threatening cardiac immune-related adverse events in ICI-treated patients with cancer.


Assuntos
Antineoplásicos Imunológicos , Antineoplásicos , Miocardite , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos Imunológicos/efeitos adversos , Epitopos/efeitos adversos , Humanos , Leucócitos Mononucleares/metabolismo , Estudos Longitudinais , Camundongos , Miocardite/metabolismo
4.
J Biol Chem ; 293(39): 15208-15220, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30115681

RESUMO

Interleukin-1 receptor (IL1R)-associated kinase 4 (IRAK4) is a central regulator of innate immune signaling, controlling IL1R and Toll-like receptor (TLR)-mediated responses and containing both scaffolding and kinase activities. Humans deficient in IRAK4 activity have autosomal recessive primary immune deficiency (PID). Here, we characterized the molecular mechanism of dysfunction of two IRAK4 PID variants, G298D and the compound variant R12C (R12C/R391H/T458I). Using these variants and the kinase-inactive D329A variant to delineate the contributions of IRAK4's scaffolding and kinase activities to IL1R signaling, we found that the G298D variant is kinase-inactive and expressed at extremely low levels, acting functionally as a null mutation. The R12C compound variant possessed WT kinase activity, but could not interact with myeloid differentiation primary response 88 (MyD88) and IRAK1, causing impairment of IL-1-induced signaling and cytokine production. Quantitation of IL-1 signaling in IRAK4-deficient cells complemented with either WT or the R12C or D329A variant indicated that the loss of MyD88 interaction had a greater impact on IL-1-induced signaling and cytokine expression than the loss of IRAK4 kinase activity. Importantly, kinase-inactive IRAK4 exhibited a greater association with MyD88 and a weaker association with IRAK1 in IRAK4-deficient cells expressing kinase-inactive IRAK4 and in primary cells treated with a selective IRAK4 inhibitor. Loss of IRAK4 kinase activity only partially inhibited IL-1-induced cytokine and NF-κB signaling. Therefore, the IRAK4-MyD88 scaffolding function is essential for IL-1 signaling, but IRAK4 kinase activity can control IL-1 signal strength by modulating the association of IRAK4, MyD88, and IRAK1.


Assuntos
Síndromes de Imunodeficiência/genética , Quinases Associadas a Receptores de Interleucina-1/química , Quinases Associadas a Receptores de Interleucina-1/genética , Interleucina-1/genética , Fator 88 de Diferenciação Mieloide/genética , Linhagem Celular , Cristalografia por Raios X , Humanos , Imunidade Inata/genética , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/patologia , Interleucina-1/química , Quinases Associadas a Receptores de Interleucina-1/deficiência , Mutação , Fator 88 de Diferenciação Mieloide/química , NF-kappa B/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores de Interleucina-1/química , Receptores de Interleucina-1/genética , Transdução de Sinais
5.
J Biol Chem ; 292(45): 18689-18698, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-28924041

RESUMO

Interleukin-1 receptor-associated kinase 4 (IRAK4) plays a critical role in innate immune signaling by Toll-like receptors (TLRs), and loss of IRAK4 activity in mice and humans increases susceptibility to bacterial infections and causes defects in TLR and IL1 ligand sensing. However, the mechanism by which IRAK4 activity regulates the production of downstream inflammatory cytokines is unclear. Using transcriptomic and biochemical analyses of human monocytes treated with a highly potent and selective inhibitor of IRAK4, we show that IRAK4 kinase activity controls the activation of interferon regulatory factor 5 (IRF5), a transcription factor implicated in the pathogenesis of multiple autoimmune diseases. Following TLR7/8 stimulation by its agonist R848, chemical inhibition of IRAK4 abolished IRF5 translocation to the nucleus and thus prevented IRF5 binding to and activation of the promoters of inflammatory cytokines in human monocytes. We also found that IKKß, an upstream IRF5 activator, is phosphorylated in response to the agonist-induced TLR signaling. Of note, IRAK4 inhibition blocked IKKß phosphorylation but did not block the nuclear translocation of NFκB, which was surprising, given the canonical role of IKKß in phosphorylating IκB to allow NFκB activation. Moreover, pharmacological inhibition of either IKKß or the serine/threonine protein kinase TAK1 in monocytes blocked TLR-induced cytokine production and IRF5 translocation to the nucleus, but not nuclear translocation of NFκB. Taken together, our data suggest a mechanism by which IRAK4 activity regulates TAK1 and IKKß activation, leading to the nuclear translocation of IRF5 and induction of inflammatory cytokines in human monocytes.


Assuntos
Quinase I-kappa B/metabolismo , Fatores Reguladores de Interferon/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Modelos Imunológicos , Monócitos/metabolismo , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Células Cultivadas , Biologia Computacional , Citocinas/agonistas , Citocinas/genética , Citocinas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/química , Fatores Reguladores de Interferon/agonistas , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/química , MAP Quinase Quinase Quinases/metabolismo , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , NF-kappa B/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Análise de Célula Única , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/metabolismo
6.
J Immunol ; 197(6): 2421-33, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27521339

RESUMO

A critical component of innate immune response to infection and tissue damage is the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome, and this pathway and its activation products have been implicated in the pathophysiology of a variety of diseases. NLRP3 inflammasome activation leads to the cleavage of pro-IL-1ß and pro-IL-18, as well as the subsequent release of biologically active IL-1ß, IL-18, and other soluble mediators of inflammation. In this study, we further define the pharmacology of the previously reported NLRP3 inflammasome-selective, IL-1ß processing inhibitor CP-456,773 (also known as MCC950), and we demonstrate its efficacy in two in vivo models of inflammation. Specifically, we show that in human and mouse innate immune cells CP-456,773 is an inhibitor of the cellular release of IL-1ß, IL-1α, and IL-18, that CP-456,773 prevents inflammasome activation induced by disease-relevant soluble and crystalline NLRP3 stimuli, and that CP-456,773 inhibits R848- and imiquimod-induced IL-1ß release. In mice, CP-456,773 demonstrates potent inhibition of the release of proinflammatory cytokines following acute i.p. challenge with LPS plus ATP in a manner that is proportional to the free/unbound concentrations of the drug, thereby establishing an in vivo pharmacokinetic/pharmacodynamic model for CP-456,773. Furthermore, CP-456,773 reduces ear swelling in an imiquimod cream-induced mouse model of skin inflammation, and it reduces airway inflammation in mice following acute challenge with house dust mite extract. These data implicate the NLRP3 inflammasome in the pathogenesis of dermal and airway inflammation, and they highlight the utility of CP-456,773 for interrogating the contribution of the NLRP3 inflammasome and its outputs in preclinical models of inflammation and disease.


Assuntos
Dermatite/tratamento farmacológico , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Inflamassomos/antagonistas & inibidores , Inflamação/fisiopatologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Pneumonia/tratamento farmacológico , Pneumonia/imunologia , Sulfonas/farmacologia , Animais , Citocinas/antagonistas & inibidores , Citocinas/imunologia , Dermatite/imunologia , Dermatite/fisiopatologia , Modelos Animais de Doenças , Furanos , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Humanos , Imunidade Inata/efeitos dos fármacos , Indenos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Interleucina-18/antagonistas & inibidores , Interleucina-18/metabolismo , Interleucina-1alfa/antagonistas & inibidores , Interleucina-1alfa/metabolismo , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/imunologia , Camundongos , Pneumonia/fisiopatologia , Transdução de Sinais , Sulfonamidas , Sulfonas/administração & dosagem , Sulfonas/uso terapêutico
7.
BMC Genomics ; 18(1): 583, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28784092

RESUMO

BACKGROUND: Alternatively spliced transcript isoforms are commonly observed in higher eukaryotes. The expression levels of these isoforms are key for understanding normal functions in healthy tissues and the progression of disease states. However, accurate quantification of expression at the transcript level is limited with current RNA-seq technologies because of, for example, limited read length and the cost of deep sequencing. RESULTS: A large number of tools have been developed to tackle this problem, and we performed a comprehensive evaluation of these tools using both experimental and simulated RNA-seq datasets. We found that recently developed alignment-free tools are both fast and accurate. The accuracy of all methods was mainly influenced by the complexity of gene structures and caution must be taken when interpreting quantification results for short transcripts. Using TP53 gene simulation, we discovered that both sequencing depth and the relative abundance of different isoforms affect quantification accuracy CONCLUSIONS: Our comprehensive evaluation helps data analysts to make informed choice when selecting computational tools for isoform quantification.


Assuntos
Isoformas de RNA/genética , Análise de Sequência de RNA/métodos , Genes p53/genética , RNA Mensageiro/genética
8.
J Autoimmun ; 83: 122-133, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28701277

RESUMO

Synovial fibroblasts (SF) drive inflammation and joint destruction in chronic arthritis. Here we show that SF possess a distinct type of LPS tolerance compared to macrophages and other types of fibroblasts. In SF and dermal fibroblasts, genes that were non-tolerizable after repeated LPS stimulation included pro-inflammatory cytokines, chemokines and matrix metalloproteinases, whereas anti-viral genes were tolerizable. In macrophages, all measured genes were tolerizable, whereas in gingival and foreskin fibroblasts these genes were non-tolerizable. Repeated stimulation of SF with LPS resulted in loss of activating histone marks only in promoters of tolerizable genes. The epigenetic landscape at promoters of tolerizable genes was similar in unstimulated SF and monocytes, whereas the basal configuration of histone marks profoundly differed in genes that were non-tolerizable in SF only. Our data suggest that the epigenetic configuration at gene promoters regulates cell-specific LPS-induced responses and primes SF to sustain their inflammatory response in chronic arthritis.


Assuntos
Artrite/imunologia , Fibroblastos/imunologia , Macrófagos/imunologia , Adulto , Idoso , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Citocinas/metabolismo , Epigênese Genética , Feminino , Regulação da Expressão Gênica , Humanos , Tolerância Imunológica , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Masculino , Pessoa de Meia-Idade , Especificidade de Órgãos , Regiões Promotoras Genéticas/genética , Membrana Sinovial/patologia
9.
Ann Rheum Dis ; 75(2): 422-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25467295

RESUMO

OBJECTIVE: To investigate the effects of BET bromodomain protein inhibition on inflammatory activation and functional properties of rheumatoid arthritis synovial fibroblasts (RASF). METHODS: The expression of the BET bromodomain proteins BRD2, BRD3 and BRD4 was analysed in synovial tissue by immunohistochemistry. RASF were stimulated with tumour necrosis factor (TNF)-α, interleukin (IL)-1ß and toll-like receptor (TLR) ligands (Pam3, pIC and lipopolysaccharide (LPS)) in the presence or absence of the BET inhibitor I-BET151, or siRNA targeting BRD2, BRD3 and BRD4. RASF expression of inflammatory mediators, including MMP1, MMP3, IL-6 and IL-8, was measured by q-PCR, q-PCR array and ELISA. Cellular viability, apoptosis, proliferation and chemoattractive properties of RASF were investigated using MTT, cell apoptosis ELISA, BrdU-based proliferation and transwell migration assays. RESULTS: BRD2, BRD3 and BRD4 proteins were detected in rheumatoid arthritis (RA) synovial tissue, expressed in both RASF and macrophages. I-BET151 suppressed cytokine and TLR ligand-induced secretion of MMP1, MMP3, IL-6 and IL-8, and mRNA expression of more than 70% of genes induced by TNF-α and IL-1ß. Combined silencing of BRD2, BRD3 and BRD4 significantly reduced cytokine and TLR ligand-induced expression of a subset of gene products targeted by I-BET151, including MMP1, CXCL10 and CXCL11. I-BET151 treatment of RASF reduced RASF proliferation, and the chemotactic potential for peripheral blood leucocytes of RASF conditioned medium. CONCLUSIONS: Inhibition of BET family proteins suppresses the inflammatory, matrix-degrading, proliferative and chemoattractive properties of RASF and suggests a therapeutic potential in the targeting of epigenetic reader proteins in RA.


Assuntos
Artrite Reumatoide/enzimologia , Artrite Reumatoide/genética , Fibroblastos/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Membrana Sinovial/metabolismo , Proteínas de Ciclo Celular , Expressão Gênica/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lipopolissacarídeos/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Proteínas Nucleares/metabolismo , Osteoartrite/enzimologia , Osteoartrite/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores Toll-Like/metabolismo , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
J Immunol ; 193(4): 1911-9, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25015823

RESUMO

TLR4 interactor with leucine-rich repeats (TRIL) is a brain-enriched accessory protein that is important in TLR3 and TLR4 signaling. In this study, we generated Tril(-/-) mice and examined TLR responses in vitro and in vivo. We found a role for TRIL in both TLR4 and TLR3 signaling in mixed glial cells, consistent with the high level of expression of TRIL in these cells. We also found that TRIL is a modulator of the innate immune response to LPS challenge and Escherichia coli infection in vivo. Tril(-/-) mice produce lower levels of multiple proinflammatory cytokines and chemokines specifically within the brain after E. coli and LPS challenge. Collectively, these data uncover TRIL as a mediator of innate immune responses within the brain, where it enhances neuronal cytokine responses to infection.


Assuntos
Encéfalo/imunologia , Proteínas de Transporte/imunologia , Imunidade Inata/imunologia , Proteínas de Membrana/imunologia , Receptor 3 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Células Cultivadas , Quimiocina CCL5/biossíntese , Escherichia coli/imunologia , Infecções por Escherichia coli/imunologia , Peptídeos e Proteínas de Sinalização Intercelular , Interleucina-6/biossíntese , Lipopolissacarídeos , Glicoproteínas de Membrana/imunologia , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroglia/imunologia , Poli I-C/farmacologia , Transdução de Sinais/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 7 Toll-Like/imunologia , Receptor 8 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/biossíntese
11.
J Biol Chem ; 289(15): 10865-10875, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24567333

RESUMO

IRAK4 is a central kinase in innate immunity, but the role of its kinase activity is controversial. The mechanism of activation for IRAK4 is currently unknown, and little is known about the role of IRAK4 kinase in cytokine production, particularly in different human cell types. We show IRAK4 autophosphorylation occurs by an intermolecular reaction and that autophosphorylation is required for full catalytic activity of the kinase. Phosphorylation of any two of the residues Thr-342, Thr-345, and Ser-346 is required for full activity, and the death domain regulates the activation of IRAK4. Using antibodies against activated IRAK4, we demonstrate that IRAK4 becomes phosphorylated in human cells following stimulation by IL-1R and Toll-like receptor agonists, which can be blocked pharmacologically by a dual inhibitor of IRAK4 and IRAK1. Interestingly, in dermal fibroblasts, although complete inhibition of IRAK4 kinase activity does not inhibit IL-1-induced IL-6 production, NF-κB, or MAPK activation, there is complete ablation of these processes in IRAK4-deficient cells. In contrast, the inhibition of IRAK kinase activity in primary human monocytes reduces R848-induced IL-6 production with minimal effect on NF-κB or MAPK activation. Taken together, these studies define the mechanism of IRAK4 activation and highlight the differential role of IRAK4 kinase activity in different human cell types as well as the distinct roles IRAK4 scaffolding and kinase functions play.


Assuntos
Regulação Enzimológica da Expressão Gênica , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Receptores de Interleucina-1/metabolismo , Receptores Toll-Like/metabolismo , Sequência de Aminoácidos , Animais , Sistema Livre de Células , Clonagem Molecular , Citocinas/metabolismo , Inibidores Enzimáticos/farmacologia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Imunidade Inata , Insetos , Interleucina-6/metabolismo , Sistema de Sinalização das MAP Quinases , Dados de Sequência Molecular , Monócitos/citologia , Mutação , NF-kappa B/metabolismo , Fases de Leitura Aberta , Fosforilação , Ligação Proteica , Conformação Proteica , Receptores de Interleucina-1/agonistas , Transdução de Sinais , Pele/metabolismo , Receptores Toll-Like/agonistas
12.
Bioorg Med Chem Lett ; 24(9): 2066-72, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24726805

RESUMO

IRAK4 is responsible for initiating signaling from Toll-like receptors (TLRs) and members of the IL-1/18 receptor family. Kinase-inactive knock-ins and targeted deletions of IRAK4 in mice cause reductions in TLR induced pro-inflammatory cytokines and these mice are resistant to various models of arthritis. Herein we report the identification and optimization of a series of potent IRAK4 inhibitors. Representative examples from this series showed excellent selectivity over a panel of kinases, including the kinases known to play a role in TLR-mediated signaling. The compounds exhibited low nM potency in LPS- and R848-induced cytokine assays indicating that they are blocking the TLR signaling pathway. A key compound (26) from this series was profiled in more detail and found to have an excellent pharmaceutical profile as measured by predictive assays such as microsomal stability, TPSA, solubility, and clogP. However, this compound was found to afford poor exposure in mouse upon IP or IV administration. We found that removal of the ionizable solubilizing group (32) led to increased exposure, presumably due to increased permeability. Compounds 26 and 32, when dosed to plasma levels corresponding to ex vivo whole blood potency, were shown to inhibit LPS-induced TNFα in an in vivo murine model. To our knowledge, this is the first published in vivo demonstration that inhibition of the IRAK4 pathway by a small molecule can recapitulate the phenotype of IRAK4 knockout mice.


Assuntos
Indóis/química , Indóis/farmacologia , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Quinolinas/química , Quinolinas/farmacologia , Animais , Feminino , Humanos , Indóis/farmacocinética , Quinases Associadas a Receptores de Interleucina-1/imunologia , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Inibidores de Proteínas Quinases/farmacocinética , Quinolinas/farmacocinética , Transdução de Sinais/efeitos dos fármacos
13.
Cell Res ; 33(2): 131-146, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36604598

RESUMO

Members of the tumor necrosis factor receptor superfamily (TNFRSF) are important therapeutic targets that can be activated to induce death of cancer cells or stimulate proliferation of immune cells. Although it has long been implicated that these receptors assemble preligand associated states that are required for dominant interference in human disease, such states have so far eluded structural characterization. Here, we find that the ectodomain of death receptor 5 (DR5-ECD), a representative member of TNFRSF, can specifically self-associate when anchored to lipid bilayer, and we report this self-association structure determined by nuclear magnetic resonance (NMR). Unexpectedly, two non-overlapping interaction interfaces are identified that could propagate to higher-order clusters. Structure-guided mutagenesis indicates that the observed preligand association structure is represented on DR5-expressing cells. The DR5 preligand association serves an autoinhibitory role as single-domain antibodies (sdAbs) that partially dissociate the preligand cluster can sensitize the receptor to its ligand TRAIL and even induce substantial receptor signaling in the absence of TRAIL. Unlike most agonistic antibodies that require multivalent binding to aggregate receptors for activation, these agonistic sdAbs are monovalent and act specifically on an oligomeric, autoinhibitory configuration of the receptor. Our data indicate that receptors such as DR5 can form structurally defined preclusters incompatible with signaling and that true agonists should disrupt the preligand cluster while converting it to signaling-productive cluster. This mechanism enhances our understanding of a long-standing question in TNFRSF signaling and suggests a new opportunity for developing agonistic molecules by targeting receptor preligand clustering.


Assuntos
Apoptose , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Humanos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/química , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais , Proteínas de Transporte/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Linhagem Celular Tumoral
14.
J Immunol ; 185(7): 4213-22, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20817881

RESUMO

The receptor for advanced glycation end products (RAGE) is a multiligand transmembrane receptor implicated in a number of diseases including autoimmune diseases. To further understand the pathogenic mechanism of RAGE in these diseases, we searched for additional ligands. We discovered that C3a bound to RAGE with an EC(50) of 1.9 nM in an ELISA, and the binding was increased both in magnitude (by >2-fold) and in affinity (EC(50) 70 pM) in the presence of human stimulatory unmethylated cytosine-guanine-rich DNA A (hCpGAs). Surface plasmon resonance and fluorescence anisotropy analyses demonstrated that hCpGAs could bind directly to RAGE and C3a and form a ternary complex. In human PBMCs, C3a increased IFN-α production in response to low levels of hCpGAs, and this synergy was blocked by soluble RAGE or by an Ab directed against RAGE. IFN-α production was reduced in response to mouse CpGAs and C3a in RAGE(-/-) mouse bone marrow cells compared wild-type mice. Taken together, these data demonstrate that RAGE is a receptor for C3a and CpGA. Through direct interaction, C3a and CpGA synergize to increase IFN-α production in a RAGE-dependent manner and stimulate an innate immune response. These findings indicate a potential role of RAGE in autoimmune diseases that show accumulation of immunostimulatory DNA and C3a.


Assuntos
Complemento C3a/metabolismo , DNA/metabolismo , Interferon gama/metabolismo , Oligonucleotídeos/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Complemento C3a/imunologia , DNA/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Interferon gama/imunologia , Camundongos , Camundongos Knockout , Oligonucleotídeos/imunologia , Ligação Proteica , Receptor para Produtos Finais de Glicação Avançada/imunologia , Ressonância de Plasmônio de Superfície
15.
Front Immunol ; 13: 1028209, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248891

RESUMO

Asthma is a chronic and heterogeneous respiratory disease with many risk factors that typically originate during early childhood. A complex interplay between environmental factors and genetic predisposition is considered to shape the lung and gut microbiome in early life. The growing literature has identified that changes in the relative abundance of microbes (microbial dysbiosis) and reduced microbial diversity, as triggers of the airway-gut axis crosstalk dysregulation, are associated with asthma development. There are several mechanisms underlying microbial dysbiosis to childhood asthma development pathways. For example, a bacterial infection in the airway of infants can lead to the activation and/or dysregulation of inflammatory pathways that contribute to bronchoconstriction and bronchial hyperresponsiveness. In addition, gut microbial dysbiosis in infancy can affect immune development and differentiation, resulting in a suboptimal balance between innate and adaptive immunity. This evolving dysregulation of secretion of pro-inflammatory mediators has been associated with persistent airway inflammation and subsequent asthma development. In this review, we examine current evidence around associations between the airway and gut microbial dysbiosis with childhood asthma development. More specifically, this review focuses on discussing the integrated roles of environmental exposures, host metabolic and immune responses, airway and gut microbial dysbiosis in driving childhood asthma development.


Assuntos
Asma , Microbioma Gastrointestinal , Asma/microbiologia , Pré-Escolar , Disbiose , Exposição Ambiental/efeitos adversos , Humanos , Imunidade , Lactente , Mediadores da Inflamação
16.
Bioorg Med Chem Lett ; 21(19): 5952-6, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21862328

RESUMO

We report here the synthesis and SAR of a new series of thieno[3,2-d]pyrimidines as potent Tpl2 kinase inhibitors. The proposed binding mode suggests the potential flipped binding mode depending on the substitution. Biacore studies show evidence of binding of these molecules to the protein kinase. The kinome inhibition profile of these molecules suggests good selectivity.


Assuntos
MAP Quinase Quinase Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Animais , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Humanos , Concentração Inibidora 50 , MAP Quinase Quinase Quinases/metabolismo , Microssomos Hepáticos , Terapia de Alvo Molecular , Monócitos , Neoplasias/tratamento farmacológico , Fosforilação , Ligação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Pirimidinas/química , Ratos , Relação Estrutura-Atividade , Especificidade por Substrato
17.
Bioorg Med Chem Lett ; 21(16): 4758-61, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21742493

RESUMO

Synthesis, modeling and structure-activity relationship of indazoles as inhibitors of Tpl2 kinase are described. From a high throughput screening effort, we identified an indazole hit compound 5 that has a single digit micromolar Tpl2 activity. Through SAR modifications at the C3 and C5 positions of the indazole, we discovered compound 31 with good potency in LANCE assay and cell-based p-Erk assay.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Indazóis/farmacologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Indazóis/síntese química , Indazóis/química , MAP Quinase Quinase Quinases/metabolismo , Modelos Moleculares , Estrutura Molecular , Monócitos/enzimologia , Monócitos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade
18.
J Immunol ; 183(6): 3989-95, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19710467

RESUMO

TLR4 is the primary sensor of LPS. In this study, we describe for the first time TLR4 interactor with leucine-rich repeats (TRIL), which is a novel component of the TLR4 complex. TRIL is expressed in a number of tissues, most prominently in the brain but also in the spinal cord, lung, kidney, and ovary. TRIL is composed of a signal sequence, 13 leucine-rich repeats, a fibronectin domain, and a single transmembrane spanning region. TRIL is induced by LPS in the human astrocytoma cell line U373, in murine brain following i.p. injection, and in human PBMC. Endogenous TRIL interacts with TLR4 and this interaction is greatly enhanced following LPS stimulation. TRIL also interacts with the TLR4 ligand LPS. Furthermore, U373 cells stably overexpressing TRIL display enhanced cytokine production in response to LPS. Finally, knockdown of TRIL using small interfering RNA attenuates LPS signaling and cytokine production in cell lines, human PBMC, and primary murine mixed glial cells. These results demonstrate that TRIL is a novel component of the TLR4 complex which may have particular relevance for the functional role of TLR4 in the brain.


Assuntos
Química Encefálica , Proteínas de Transporte/análise , Proteínas de Membrana/análise , Receptor 4 Toll-Like/metabolismo , Animais , Astrocitoma/patologia , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Citocinas/biossíntese , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Leucócitos Mononucleares/citologia , Lipopolissacarídeos/farmacologia , Proteínas de Membrana/metabolismo , Camundongos , Ligação Proteica
19.
JCI Insight ; 6(21)2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34591795

RESUMO

Experimental autoimmune encephalomyelitis (EAE) is a well-characterized animal model of multiple sclerosis. During the early phase of EAE, infiltrating monocytes and monocyte-derived macrophages contribute to T cell recruitment, especially CD4+ T cells, into the CNS, resulting in neuronal demyelination; however, in later stages, they promote remyelination and recovery by removal of myelin debris by phagocytosis. Signal regulatory protein α and CD47 are abundantly expressed in the CNS, and deletion of either molecule is protective in myelin oligodendrocyte glycoprotein-induced EAE because of failed effector T cell expansion and trafficking. Here we report that treatment with the function blocking CD47 Ab Miap410 substantially reduced the infiltration of pathogenic immune cells but impaired recovery from paresis. The underlying mechanism was by blocking the emergence of CD11chiMHCIIhi microglia at peak disease that expressed receptors for phagocytosis, scavenging, and lipid catabolism, which mediated clearance of myelin debris and the transition of monocytes to macrophages in the CNS. In the recovery phase of EAE, Miap410 Ab-treated mice had worsening paresis with sustained inflammation and limited remyelination as compared with control Ab-treated mice. In summary, Ab blockade of CD47 impaired resolution of CNS inflammation, thus worsening EAE.


Assuntos
Antígeno CD47/metabolismo , Encefalomielite Autoimune Experimental/genética , Macrófagos/metabolismo , Microglia/metabolismo , Monócitos/metabolismo , Fagocitose/genética , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Knockout
20.
Arthritis Rheumatol ; 73(12): 2206-2218, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34423919

RESUMO

OBJECTIVE: To investigate the role of PF-06650833, a highly potent and selective small-molecule inhibitor of interleukin-1-associated kinase 4 (IRAK4), in autoimmune pathophysiology in vitro, in vivo, and in the clinical setting. METHODS: Rheumatoid arthritis (RA) inflammatory pathophysiology was modeled in vitro through 1) stimulation of primary human macrophages with anti-citrullinated protein antibody immune complexes (ICs), 2) RA fibroblast-like synoviocyte (FLS) cultures stimulated with Toll-like receptor (TLR) ligands, as well as 3) additional human primary cell cocultures exposed to inflammatory stimuli. Systemic lupus erythematosus (SLE) pathophysiology was simulated in human neutrophils, dendritic cells, B cells, and peripheral blood mononuclear cells stimulated with TLR ligands and SLE patient ICs. PF-06650833 was evaluated in vivo in the rat collagen-induced arthritis (CIA) model and the mouse pristane-induced and MRL/lpr models of lupus. Finally, RNA sequencing data generated with whole blood samples from a phase I multiple-ascending-dose clinical trial of PF-06650833 were used to test in vivo human pharmacology. RESULTS: In vitro, PF-06650833 inhibited human primary cell inflammatory responses to physiologically relevant stimuli generated with RA and SLE patient plasma. In vivo, PF-06650833 reduced circulating autoantibody levels in the pristane-induced and MRL/lpr murine models of lupus and protected against CIA in rats. In a phase I clinical trial (NCT02485769), PF-06650833 demonstrated in vivo pharmacologic action pertinent to SLE by reducing whole blood interferon gene signature expression in healthy volunteers. CONCLUSION: These data demonstrate that inhibition of IRAK4 kinase activity can reduce levels of inflammation markers in humans and provide confidence in the rationale for clinical development of IRAK4 inhibitors for rheumatologic indications.


Assuntos
Artrite Experimental/tratamento farmacológico , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Isoquinolinas/uso terapêutico , Lactamas/uso terapêutico , Macrófagos/efeitos dos fármacos , Doenças Reumáticas/tratamento farmacológico , Sinoviócitos/efeitos dos fármacos , Animais , Artrite Experimental/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Modelos Animais de Doenças , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Isoquinolinas/farmacologia , Lactamas/farmacologia , Leucócitos Mononucleares/imunologia , Macrófagos/imunologia , Camundongos , Ratos , Doenças Reumáticas/imunologia , Sinoviócitos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA