Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mol Cell ; 61(1): 84-97, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26687681

RESUMO

Autophagy, a cellular self-eating mechanism, is important for maintaining cell survival and tissue homeostasis in various stressed conditions. Although the molecular mechanism of autophagy induction has been well studied, how cells terminate autophagy process remains elusive. Here, we show that ULK1, a serine/threonine kinase critical for autophagy initiation, is a substrate of the Cul3-KLHL20 ubiquitin ligase. Upon autophagy induction, ULK1 autophosphorylation facilitates its recruitment to KLHL20 for ubiquitination and proteolysis. This autophagy-stimulated, KLHL20-dependent ULK1 degradation restrains the amplitude and duration of autophagy. Additionally, KLHL20 governs the degradation of ATG13, VPS34, Beclin-1, and ATG14 in prolonged starvation through a direct or indirect mechanism. Impairment of KLHL20-mediated regulation of autophagy dynamics potentiates starvation-induced cell death and aggravates diabetes-associated muscle atrophy. Our study identifies a key role of KLHL20 in autophagy termination by controlling autophagy-dependent turnover of ULK1 and VPS34 complex subunits and reveals the pathophysiological functions of this autophagy termination mechanism.


Assuntos
Autofagia , Proteínas de Transporte/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Culina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Proteína Beclina-1 , Proteínas de Transporte/genética , Classe III de Fosfatidilinositol 3-Quinases/genética , Proteínas Culina/genética , Complicações do Diabetes/enzimologia , Complicações do Diabetes/genética , Complicações do Diabetes/patologia , Retroalimentação Fisiológica , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Atrofia Muscular/enzimologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Proteólise , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transfecção , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Proteínas de Transporte Vesicular/metabolismo
2.
Mol Psychiatry ; 26(5): 1472-1490, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32332993

RESUMO

The formation and maintenance of synapses require long-distance delivery of newly synthesized synaptic proteins from the soma to distal synapses, raising the fundamental question of whether impaired transport is associated with neurodevelopmental disorders such as autism. We previously revealed that syntabulin acts as a motor adapter linking kinesin-1 motor and presynaptic cargos. Here, we report that defects in syntabulin-mediated transport and thus reduced formation and maturation of synapses are one of core synaptic mechanisms underlying autism-like synaptic dysfunction and social behavioral abnormalities. Syntabulin expression in the mouse brain peaks during the first 2 weeks of postnatal development and progressively declines during brain maturation. Neurons from conditional syntabulin-/- mice (stb cKO) display impaired transport of presynaptic cargos, reduced synapse density and active zones, and altered synaptic transmission and long-term plasticity. Intriguingly, stb cKO mice exhibit core autism-like traits, including defective social recognition and communication, increased stereotypic behavior, and impaired spatial learning and memory. These phenotypes establish a new mechanistic link between reduced transport of synaptic cargos and impaired maintenance of synaptic transmission and plasticity, contributing to autism-associated behavioral abnormalities. This notion is further confirmed by the human missense variant STB-R178Q, which is found in an autism patient and loses its adapter capacity for binding kinesin-1 motors. Expressing STB-R178Q fails to rescue reduced synapse formation and impaired synaptic transmission and plasticity in stb cKO neurons. Altogether, our study suggests that defects in syntabulin-mediated transport mechanisms underlie the synaptic dysfunction and behavioral abnormalities that bear similarities to autism.


Assuntos
Transtorno Autístico , Animais , Transtorno Autístico/genética , Células Cultivadas , Humanos , Camundongos , Neurônios , Sinapses , Transmissão Sináptica
3.
Mol Cell ; 54(4): 586-600, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24768539

RESUMO

Ubiquitin chains are formed as structurally distinct polymers via different linkages, and several chain types including K33-linkage remain uncharacterized. Here, we describe a role for K33-polyubiquitination in protein trafficking. We show that the Cullin 3 (Cul3) substrate adaptor KLHL20 is localized to the trans-Golgi network (TGN) and is important for post-Golgi trafficking by promoting the biogenesis of TGN-derived transport carriers. The Cul3-KLHL20 ubiquitin E3 ligase catalyzes a nondegradable, K33-linked polyubiquitination on coronin 7 (Crn7), which facilitates Crn7 targeting to TGN through a ubiquitin-dependent interaction with Eps15. Blockage of K33-chain formation, Crn7 ubiquitination, or disruption of Crn7-Eps15 interaction impairs TGN-pool F-actin assembly, a process essential for generating transport carriers. Enforced targeting of Crn7 to TGN bypasses the requirement of K33-ubiquitination for TGN-pool F-actin assembly and post-Golgi trafficking. Our study reveals a role of KLHL20-mediated K33-ubiquitination of Crn7 in post-Golgi transport and identifies a cellular recognition mechanism for this ubiquitin chain type.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Culina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Transporte Proteico , Ubiquitina-Proteína Ligases/metabolismo , Actinas/genética , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Células COS , Proteínas de Transporte/genética , Linhagem Celular , Chlorocebus aethiops , Proteínas Culina/genética , Complexo de Golgi/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisina/metabolismo , Proteínas dos Microfilamentos/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Rede trans-Golgi/metabolismo
4.
Exp Cell Res ; 334(1): 35-44, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25612908

RESUMO

Mitochondria are cellular power plants that supply ATP to power various biological activities essential for neuronal growth, survival, and function. Due to unique morphological features, neurons face exceptional challenges to maintain ATP and Ca(2+) homeostasis. Neurons require specialized mechanisms distributing mitochondria to distal areas where energy and Ca(2+) buffering are in high demand, such as synapses and axonal branches. These distal compartments also undergo development- and activity-dependent remodeling, thereby altering mitochondrial trafficking and distribution. Mitochondria move bi-directionally, pause briefly, and move again, frequently changing direction. In mature neurons, only one-third of axonal mitochondria are motile. Stationary mitochondria serve as local energy sources and buffer intracellular Ca(2+). The balance between motile and stationary mitochondria responds quickly to changes in axonal and synaptic physiology. Furthermore, neurons are postmitotic cells surviving for the lifetime of the organism; thus, mitochondria need to be removed when they become aged or dysfunction. Mitochondria also alter their motility under stress conditions or when their integrity is impaired. Therefore, regulation of mitochondrial transport is essential to meet altered metabolic requirements and to remove aged and damaged mitochondria or replenish healthy ones to distal terminals. Defects in mitochondrial transport and altered distribution are implicated in the pathogenesis of several major neurological disorders. Thus, research into the mechanisms regulating mitochondrial motility is an important emerging frontier in neurobiology. This short review provides an updated overview on motor-adaptor machineries that drive and regulate mitochondrial transport and docking receptors that anchor axonal mitochondria in response to the changes in synaptic activity, metabolic requirement, and altered mitochondrial integrity. The review focuses on microtubule (MT)-based mitochondrial trafficking and anchoring. Additional insight from different perspectives can be found in other in-depth reviews.


Assuntos
Mitocôndrias/metabolismo , Neurônios/metabolismo , Animais , Transporte Biológico , Humanos , Proteínas Motores Moleculares/metabolismo , Transdução de Sinais
5.
Dev Cell ; 56(10): 1452-1468.e8, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33878344

RESUMO

Niemann-Pick disease type C (NPC) is a neurodegenerative lysosomal storage disorder characterized by lipid accumulation in endolysosomes. An early pathologic hallmark is axonal dystrophy occurring at presymptomatic stages in NPC mice. However, the mechanisms underlying this pathologic change remain obscure. Here, we demonstrate that endocytic-autophagic organelles accumulate in NPC dystrophic axons. Using super-resolution and live-neuron imaging, we reveal that elevated cholesterol on NPC lysosome membranes sequesters kinesin-1 and Arl8 independent of SKIP and Arl8-GTPase activity, resulting in impaired lysosome transport into axons, contributing to axonal autophagosome accumulation. Pharmacologic reduction of lysosomal membrane cholesterol with 2-hydroxypropyl-ß-cyclodextrin (HPCD) or elevated Arl8b expression rescues lysosome transport, thereby reducing axonal autophagic stress and neuron death in NPC. These findings demonstrate a pathological mechanism by which altered membrane lipid composition impairs lysosome delivery into axons and provide biological insights into the translational application of HPCD in restoring axonal homeostasis at early stages of NPC disease.


Assuntos
Autofagia , Axônios/metabolismo , Lipídeos/química , Lisossomos/metabolismo , Distrofias Musculares/patologia , Doença de Niemann-Pick Tipo C/patologia , Estresse Fisiológico , Animais , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Transporte Biológico , Morte Celular , Colesterol/metabolismo , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestrutura , GTP Fosfo-Hidrolases/metabolismo , Membranas Intracelulares/metabolismo , Cinesinas/metabolismo , Camundongos Endogâmicos BALB C , Distrofias Musculares/complicações , Proteína C1 de Niemann-Pick/deficiência , Proteína C1 de Niemann-Pick/metabolismo , Doença de Niemann-Pick Tipo C/complicações
6.
Autophagy ; 17(7): 1796-1798, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34085599

RESUMO

Efficient degradation of autophagic vacuoles (AVs) generated at axon terminals by mature lysosomes enriched in the cell body represents an exceptional challenge that neurons face in maintaining cellular homeostasis. Here, we discuss our recent findings revealing a lipid-mediated impairment of lysosome transport to distal axons contributing to axonal AV accumulation in the neurodegenerative lysosomal storage disorder Niemann-Pick disease type C (NPC). Using transmission electron microscopy, we observed a striking buildup of endocytic and autophagic organelles in NPC dystrophic axons, indicating defects in the clearance of organelles destined for lysosomal degradation. We further revealed that elevated cholesterol on NPC lysosome membranes abnormally sequesters motor-adaptors of axonal lysosome delivery, resulting in impaired anterograde lysosome transport into distal axons that disrupts maturation of axonal AVs during their retrograde transport route. Together, our study demonstrates a mechanism by which altered membrane lipid composition compromises axonal lysosome trafficking and positioning and shows that lowering lysosomal lipid levels rescues lysosome transport into NPC axons, thus reducing axonal autophagic stress at early stages of NPC disease.


Assuntos
Autofagia , Lisossomos , Autofagossomos/metabolismo , Transporte Axonal , Lipídeos , Lisossomos/metabolismo
7.
Autophagy ; 16(1): 176-178, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31679452

RESUMO

Chronic mitochondrial stress is associated with major neurodegenerative diseases; and thus, the recovery of those mitochondria constitutes a critical step of energy maintenance in early stages of neurodegeneration. Our recent study provides the first lines of evidence showing that the MUL1-MFN2 pathway acts as an early checkpoint to maintain mitochondrial integrity by regulating mitochondrial morphology and interplay with the endoplasmic reticulum (ER). This mechanism ensures that degradation through mitophagy is restrained in neurons under early stress conditions. MUL1 deficiency increases MFN2 activity, triggering the first phase of mitochondrial hyperfusion and acting as an antagonist of ER-mitochondria (ER-Mito) tethering. Reduced ER-Mito interplay enhances the cytoplasmic Ca2+ load that induces the DNM1L/Drp1-dependent second phase of mitochondrial fragmentation and mitophagy. Our study provides new mechanistic insights into neuronal mitochondrial maintenance under stress conditions. Identifying this pathway is particularly relevant because chronic mitochondrial dysfunction and altered ER-Mito contacts have been reported in major neurodegenerative diseases.


Assuntos
Autofagia/fisiologia , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Animais , Humanos , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/metabolismo
8.
Nat Commun ; 10(1): 3645, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409786

RESUMO

Chronic mitochondrial stress associates with major neurodegenerative diseases. Recovering stressed mitochondria constitutes a critical step of mitochondrial quality control and thus energy maintenance in early stages of neurodegeneration. Here, we reveal Mul1-Mfn2 pathway that maintains neuronal mitochondrial integrity under stress conditions. Mul1 deficiency increases Mfn2 activity that triggers the first phasic mitochondrial hyperfusion and also acts as an ER-Mito tethering antagonist. Reduced ER-Mito coupling leads to increased cytoplasmic Ca2+ load that activates calcineurin and induces the second phasic Drp1-dependent mitochondrial fragmentation and mitophagy. Overexpressing Mfn2, but not Mfn1, mimics Mul1-deficient phenotypes, while expressing PTPIP51, an ER-Mito anchoring protein, suppresses Parkin-mediated mitophagy. Thus, by regulating mitochondrial morphology and ER-Mito contacts, Mul1-Mfn2 pathway plays an early checkpoint role in maintaining mitochondrial integrity. Our study provides new mechanistic insights into neuronal mitochondrial maintenance under stress conditions, which is relevant to several major neurodegenerative diseases associated with mitochondrial dysfunction and altered ER-Mito interplay.


Assuntos
Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia , Neurônios/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Cálcio/metabolismo , Retículo Endoplasmático/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Neurônios/citologia , Ubiquitina-Proteína Ligases/genética
9.
Neuron ; 94(3): 595-610.e6, 2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28472658

RESUMO

Chronic mitochondrial stress is a central problem associated with neurodegenerative diseases. Early removal of defective mitochondria from axons constitutes a critical step of mitochondrial quality control. Here we investigate axonal mitochondrial response to mild stress in wild-type neurons and chronic mitochondrial defects in Amytrophic Lateral Sclerosis (ALS)- and Alzheimer's disease (AD)-linked neurons. We show that stressed mitochondria are removed from axons triggered by the bulk release of mitochondrial anchoring protein syntaphilin via a new class of mitochondria-derived cargos independent of Parkin, Drp1, and autophagy. Immuno-electron microscopy and super-resolution imaging show the budding of syntaphilin cargos, which then share a ride on late endosomes for transport toward the soma. Releasing syntaphilin is also activated in the early pathological stages of ALS- and AD-linked mutant neurons. Our study provides new mechanistic insights into the maintenance of axonal mitochondrial quality through SNPH-mediated coordination of mitochondrial stress and motility before activation of Parkin-mediated mitophagy. VIDEO ABSTRACT.


Assuntos
Axônios/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Mitofagia/genética , Neurônios Motores/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Estresse Fisiológico , Proteínas de Transporte Vesicular/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Cálcio/metabolismo , Córtex Cerebral/citologia , Endossomos/metabolismo , Feminino , Humanos , Masculino , Proteínas de Membrana , Camundongos , Camundongos Knockout , Microscopia Imunoeletrônica , Pessoa de Meia-Idade , Mutação , Neurônios/citologia , Neurônios/metabolismo , Ratos , Medula Espinal/citologia , Ubiquitina-Proteína Ligases/genética
10.
Autophagy ; 13(10): 1792-1794, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28812939

RESUMO

Chronic mitochondrial dysfunction has been implicated in major neurodegenerative diseases. Long-term cumulative pathological stress leads to axonal accumulation of damaged mitochondria. Therefore, the early removal of defective mitochondria from axons constitutes a critical step of mitochondrial quality control. We recently investigated the axonal mitochondrial response to mild stress in wild-type neurons and chronic mitochondrial defects in amyotrophic lateral sclerosis (ALS)- and Alzheimer disease (AD)-linked neurons. We demonstrated that remobilizing stressed mitochondria is critical for maintaining axonal mitochondrial integrity. The selective release of the mitochondrial anchoring protein SNPH (syntaphilin) from stressed mitochondria enhances their retrograde transport toward the soma before PARK2/Parkin-mediated mitophagy is activated. This SNPH-mediated response is robustly activated during the early disease stages of ALS-linked motor neurons and AD-related cortical neurons. Our study thus reveals a new mechanism for the maintenance of axonal mitochondrial integrity through SNPH-mediated coordination of mitochondrial stress and motility that is independent of mitophagy.


Assuntos
Doença de Alzheimer/patologia , Esclerose Lateral Amiotrófica/patologia , Axônios/metabolismo , Axônios/patologia , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Drosophila , Humanos , Proteínas de Membrana , Camundongos , Camundongos Transgênicos , Mitocôndrias/patologia , Mitofagia/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/fisiologia
11.
J Cell Biol ; 214(1): 103-19, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27268498

RESUMO

Although neuronal regeneration is a highly energy-demanding process, axonal mitochondrial transport progressively declines with maturation. Mature neurons typically fail to regenerate after injury, thus raising a fundamental question as to whether mitochondrial transport is necessary to meet enhanced metabolic requirements during regeneration. Here, we reveal that reduced mitochondrial motility and energy deficits in injured axons are intrinsic mechanisms controlling regrowth in mature neurons. Axotomy induces acute mitochondrial depolarization and ATP depletion in injured axons. Thus, mature neuron-associated increases in mitochondria-anchoring protein syntaphilin (SNPH) and decreases in mitochondrial transport cause local energy deficits. Strikingly, enhancing mitochondrial transport via genetic manipulation facilitates regenerative capacity by replenishing healthy mitochondria in injured axons, thereby rescuing energy deficits. An in vivo sciatic nerve crush study further shows that enhanced mitochondrial transport in snph knockout mice accelerates axon regeneration. Understanding deficits in mitochondrial trafficking and energy supply in injured axons of mature neurons benefits development of new strategies to stimulate axon regeneration.


Assuntos
Transporte Axonal , Axônios/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Regeneração Nervosa , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Axotomia , Diferenciação Celular , Proteína GAP-43/metabolismo , Cones de Crescimento/metabolismo , Potencial da Membrana Mitocondrial , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso , Nervo Isquiático/metabolismo , Estresse Fisiológico
12.
Autophagy ; 11(10): 1934-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26290961

RESUMO

Autophagy is an important homeostatic process that functions by eliminating defective organelles and aggregated proteins over a neuron's lifetime. One pathological hallmark in amyotrophic lateral sclerosis (ALS)-linked motor neurons (MNs) is axonal accumulation of autophagic vacuoles (AVs), thus raising a fundamental question as to whether reduced autophagic clearance due to an impaired lysosomal system contributes to autophagic stress and axonal degeneration. We recently revealed progressive lysosomal deficits in spinal MNs beginning at early asymptomatic stages in fALS-linked mice expressing the human (Hs) SOD1(G93A) protein. Such deficits impair the degradation of AVs engulfing damaged mitochondria from distal axons. These early pathological changes are attributable to mutant HsSOD1, which interferes with dynein-driven endolysosomal trafficking. Elucidation of this pathological mechanism is broadly relevant, because autophagy-lysosomal deficits are associated with several major neurodegenerative diseases. Therefore, enhancing autophagic clearance by rescuing endolysosomal trafficking may be a potential therapeutic strategy for ALS and perhaps other neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Autofagia/fisiologia , Lisossomos/metabolismo , Neurônios Motores/patologia , Medula Espinal/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Humanos , Medula Espinal/patologia
13.
Autophagy ; 11(8): 1434-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26102591

RESUMO

Degradation of autophagic vacuoles (AVs) via lysosomes is an important homeostatic process in cells. Neurons are highly polarized cells with long axons, thus facing special challenges to transport AVs generated at distal processes toward the soma where mature acidic lysosomes are relatively enriched. We recently revealed a new motor-adaptor sharing mechanism driving autophagosome transport to the soma. Late endosome (LE)-loaded dynein-SNAPIN motor-adaptor complexes mediate the retrograde transport of autophagosomes upon their fusion with LEs in distal axons. This motor-adaptor sharing mechanism enables neurons to maintain effective autophagic clearance in the soma, thus reducing autophagic stress in axons. Therefore, our study reveals a new cellular mechanism underlying the removal of distal AVs engulfing aggregated misfolded proteins and dysfunctional organelles associated with several major neurodegenerative diseases.


Assuntos
Autofagia/fisiologia , Axônios/metabolismo , Neurônios/metabolismo , Fagossomos/metabolismo , Animais , Transporte Biológico , Dineínas/metabolismo , Endossomos/metabolismo , Homeostase , Humanos , Lisossomos/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas de Transporte Vesicular/metabolismo
14.
J Cell Biol ; 209(3): 377-86, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25940348

RESUMO

Efficient degradation of autophagic vacuoles (AVs) via lysosomes is an important cellular homeostatic process. This is particularly challenging for neurons because mature acidic lysosomes are relatively enriched in the soma. Although dynein-driven retrograde transport of AVs was suggested, a fundamental question remains how autophagosomes generated at distal axons acquire dynein motors for retrograde transport toward the soma. In this paper, we demonstrate that late endosome (LE)-loaded dynein-snapin complexes drive AV retrograde transport in axons upon fusion of autophagosomes with LEs into amphisomes. Blocking the fusion with syntaxin17 knockdown reduced recruitment of dynein motors to AVs, thus immobilizing them in axons. Deficiency in dynein-snapin coupling impaired AV transport ,: resulting in AV accumulation in neurites and synaptic terminals. Altogether, our study provides the first evidence that autophagosomes recruit dynein through fusion with LEs and reveals a new motor-adaptor sharing mechanism by which neurons may remove distal AVs engulfing aggregated proteins and dysfunctional organelles for efficient degradation in the soma.


Assuntos
Transporte Axonal/fisiologia , Axônios/metabolismo , Dineínas/metabolismo , Endossomos/metabolismo , Gânglios Espinais/metabolismo , Fagossomos/metabolismo , Animais , Axônios/ultraestrutura , Dineínas/genética , Endossomos/genética , Gânglios Espinais/ultraestrutura , Células HEK293 , Humanos , Fagossomos/genética , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Ratos , Ratos Sprague-Dawley
15.
Neuron ; 87(2): 355-70, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26182418

RESUMO

One pathological hallmark in ALS motor neurons (MNs) is axonal accumulation of damaged mitochondria. A fundamental question remains: does reduced degradation of those mitochondria by an impaired autophagy-lysosomal system contribute to mitochondrial pathology? We reveal MN-targeted progressive lysosomal deficits accompanied by impaired autophagic degradation beginning at asymptomatic stages in fALS-linked hSOD1(G93A) mice. Lysosomal deficits result in accumulation of autophagic vacuoles engulfing damaged mitochondria along MN axons. Live imaging of spinal MNs from the adult disease mice demonstrates impaired dynein-driven retrograde transport of late endosomes (LEs). Expressing dynein-adaptor snapin reverses transport defects by competing with hSOD1(G93A) for binding dynein, thus rescuing autophagy-lysosomal deficits, enhancing mitochondrial turnover, improving MN survival, and ameliorating the disease phenotype in hSOD1(G93A) mice. Our study provides a new mechanistic link for hSOD1(G93A)-mediated impairment of LE transport to autophagy-lysosomal deficits and mitochondrial pathology. Understanding these early pathological events benefits development of new therapeutic interventions for fALS-linked MN degeneration.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Lisossomos/patologia , Mitocôndrias/patologia , Neurônios/patologia , Neurônios/ultraestrutura , Medula Espinal/patologia , Fatores Etários , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Animais , Autofagia , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Regulação da Expressão Gênica/genética , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/genética , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Superóxido Dismutase/genética , Fatores de Tempo , Transdução Genética , Ubiquitina-Proteína Ligases , Proteínas de Transporte Vesicular/uso terapêutico
16.
Methods Enzymol ; 547: 75-96, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25416353

RESUMO

Mitochondria are cellular power plants that supply ATP to power various biological activities essential for neuronal growth, survival, and function. Due to extremely varied morphological features, neurons face exceptional challenges to maintain energy homeostasis. Neurons require specialized mechanisms distributing mitochondria to distal synapses where energy is in high demand. Axons and synapses undergo activity-dependent remodeling, thereby altering mitochondrial distribution. The uniform microtubule polarity has made axons particularly useful for exploring mechanisms regulating mitochondrial transport. Mitochondria alter their motility under stress conditions or when their integrity is impaired. Therefore, research into the mechanisms regulating mitochondrial motility in healthy and diseased neurons is an important emerging frontier in neurobiology. In this chapter, we discuss the current protocols in the characterization of axonal mitochondrial transport in primary neuron cultures isolated from embryonic rats and adult mice. We also briefly discuss new procedures developed in our lab in analyzing mitochondrial motility patterns at presynaptic terminals and evaluate their impact on synaptic vesicle release.


Assuntos
Transporte Axonal , Mitocôndrias/metabolismo , Biologia Molecular/métodos , Neurônios/citologia , Neurônios/metabolismo , Animais , Transporte Biológico/fisiologia , Técnicas de Cultura de Células , Células Cultivadas , Embrião de Mamíferos/citologia , Corantes Fluorescentes , Hipocampo/citologia , Hipocampo/embriologia , Processamento de Imagem Assistida por Computador , Camundongos , Mitocôndrias/química , Ratos , Transfecção
17.
PLoS One ; 9(2): e88772, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24551161

RESUMO

BACKGROUND: The ability of human bone marrow mesenchymal stem cells (BM-MSCs) to migrate and localize specifically to injured tissues is central in developing therapeutic strategies for tissue repair and regeneration. Fibroblast activation protein (FAP) is a cell surface serine protease expressed at sites of tissue remodeling during embryonic development. It is also expressed in BM-MSCs, but not in normal tissues or cells. The function of FAP in BM-MSCs is not known. PRINCIPAL FINDINGS: We found that depletion of FAP proteins significantly inhibited the migration of BM-MSCs in a transwell chemotaxis assay. Such impaired migration ability of BM-MSCs could be rescued by re-expressing FAP in these cells. We then demonstrated that depletion of FAP activated intracellular RhoA GTPase. Consistently, inhibition of RhoA activity using a RhoA inhibitor rescued its migration ability. Inhibition of FAP activity with an FAP-specific inhibitor did not affect the activation of RhoA or the migration of BM-MSCs. Furthermore, the inflammatory cytokines interleukin-1beta (IL-1ß) and transforming growth factor-beta (TGF-ß) upregulated FAP expression, which coincided with better BM-MSC migration. CONCLUSIONS: Our results indicate FAP plays an important role in the migration of BM-MSCs through modulation of RhoA GTPase activity. The peptidase activity of FAP is not essential for such migration. Cytokines IL-1ß and TGF-ß upregulate the expression level of FAP and thus enhance BM-MSC migration.


Assuntos
Gelatinases/genética , Proteínas de Membrana/genética , Células-Tronco Mesenquimais/metabolismo , Serina Endopeptidases/genética , Proteína rhoA de Ligação ao GTP/genética , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Linhagem Celular , Quimiotaxia , Endopeptidases , Inibidores Enzimáticos/farmacologia , Gelatinases/antagonistas & inibidores , Gelatinases/deficiência , Regulação da Expressão Gênica , Teste de Complementação Genética , Humanos , Interleucina-1beta/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/deficiência , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Cultura Primária de Células , Serina Endopeptidases/deficiência , Transdução de Sinais , Fator de Crescimento Transformador beta/farmacologia , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/metabolismo
18.
J Cell Biol ; 193(6): 985-94, 2011 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-21670212

RESUMO

The induction of neurite outgrowth and arborization is critical for developmental and regenerative processes. In this paper, we report that the BTB-kelch protein KLHL20 promoted neurite outgrowth and arborization in hippocampal and cortical neurons through its interaction with Cullin3 to form a ubiquitin ligase complex. This complex targeted PDZ-Rho guanine nucleotide exchange factor (RhoGEF), a protein abundantly expressed in the brain, for ubiquitin-dependent proteolysis, thereby restricting RhoA activity and facilitating growth cone spreading and neurite outgrowth. Importantly, targeting PDZ-RhoGEF to KLHL20 required PDZ-RhoGEF phosphorylation by p38 mitogen-activated protein kinase. In response to p38-activating neurotrophins, such as brain-derived neurotrophic factor and neurotrophin-3, KLHL20-mediated PDZ-RhoGEF destruction was potentiated, leading to neurotrophin-induced neurite outgrowth. Our study identified a ubiquitin-dependent pathway that targets PDZ-RhoGEF destruction to facilitate neurite outgrowth and indicates a key role of this pathway in neurotrophin-induced neuronal morphogenesis.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Culina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Crescimento Neural/metabolismo , Neuritos/fisiologia , Domínios PDZ , Ubiquitinação , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/genética , Células Cultivadas , Proteínas Culina/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Células HeLa , Humanos , Neuritos/ultraestrutura , Neurônios/citologia , Neurônios/metabolismo , Ratos , Fatores de Troca de Nucleotídeo Guanina Rho , Técnicas do Sistema de Duplo-Híbrido , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA