Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338891

RESUMO

The growing recognition of the association between maternal chronic kidney disease (CKD) and fetal programming highlights the increased vulnerability of hypertension in offspring. Potential mechanisms involve oxidative stress, dysbiosis in gut microbiota, and activation of the renin-angiotensin system (RAS). Our prior investigation showed that the administration of adenine to pregnant rats resulted in the development of CKD, ultimately causing hypertension in their adult offspring. Citrulline, known for enhancing nitric oxide (NO) production and possessing antioxidant and antihypertensive properties, was explored for its potential to reverse high blood pressure (BP) in offspring born to CKD dams. Male rat offspring, both from normal and adenine-induced CKD models, were randomly assigned to four groups (8 animals each): (1) control, (2) CKD, (3) citrulline-treated control rats, and (4) citrulline-treated CKD rats. Citrulline supplementation successfully reversed elevated BP in male progeny born to uremic mothers. The protective effects of perinatal citrulline supplementation were linked to an enhanced NO pathway, decreased expression of renal (pro)renin receptor, and changes in gut microbiota composition. Citrulline supplementation led to a reduction in the abundance of Monoglobus and Streptococcus genera and an increase in Agothobacterium Butyriciproducens. Citrulline's ability to influence taxa associated with hypertension may be linked to its protective effects against maternal CKD-induced offspring hypertension. In conclusion, perinatal citrulline treatment increased NO availability and mitigated elevated BP in rat offspring from uremic mother rats.


Assuntos
Doenças do Sistema Nervoso Autônomo , Hipertensão , Pré-Eclâmpsia , Efeitos Tardios da Exposição Pré-Natal , Insuficiência Renal Crônica , Gravidez , Humanos , Feminino , Ratos , Animais , Masculino , Citrulina/farmacologia , Citrulina/uso terapêutico , Ratos Sprague-Dawley , Hipertensão/etiologia , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/complicações , Adenina/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente
2.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36674799

RESUMO

Chronic kidney disease (CKD) affects 10% of the global population, including pregnant women. Adverse maternal conditions determine the developmental programming of many diseases later in life. We previously demonstrated that adult rat offspring born to dams with CKD developed hypertension and renal hypertrophy. Trimethylamine-N-oxide (TMAO), a uremic toxin derived from the gut microbiota, has been linked to hypertension. This study assesses the effects of TMAO inhibition by iodomethylcholine (IMC) treatment on offspring hypertension programmed by maternal CKD. Female rats were fed either a control or a 0.5% adenine diet before conception, with or without IMC treatment during pregnancy and lactation. Maternal IMC treatment averted maternal CKD-primed offspring hypertension and renal hypertrophy in 12-week-old offspring. Offspring hypertension is associated with increases in the plasma TMAO concentration and oxidative stress and shifts in gut microbiota. The beneficial effects of IMC are related to a reduction in TMAO; increases in genera Acetatifactor, Bifidobacterium, and Eubacterium; and decreases in genera Phocacecola and Bacteroides. Our findings afford insights into the targeting of the gut microbiota to deplete TMAO production, with therapeutic potential for the prevention of offspring hypertension programmed by maternal CKD, although these results still need further clinical translation.


Assuntos
Hipertensão , Insuficiência Renal Crônica , Feminino , Ratos , Humanos , Animais , Gravidez , Insuficiência Renal Crônica/tratamento farmacológico , Metilaminas , Hipertensão/prevenção & controle , Hipertrofia , Óxidos/uso terapêutico
3.
Int J Mol Sci ; 23(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35887270

RESUMO

Emerging evidence supports that hypertension can be programmed or reprogrammed by maternal nutrition. Maternal exposures during pregnancy, such as maternal nutrition or antibiotic use, could alter the offspring's gut microbiota. Short-chain fatty acids (SCFAs) are the major gut microbiota-derived metabolites. Acetate, the most dominant SCFA, has shown its antihypertensive effect. Limited information exists regarding whether maternal acetate supplementation can prevent maternal minocycline-induced hypertension in adult offspring. We exposed pregnant Sprague Dawley rats to normal diet (ND), minocycline (MI, 50 mg/kg/day), magnesium acetate (AC, 200 mmol/L in drinking water), and MI + AC from gestation to lactation period. At 12 weeks of age, four groups (n = 8/group) of male progeny were sacrificed. Maternal acetate supplementation protected adult offspring against minocycline-induced hypertension. Minocycline administration reduced plasma acetic acid level, which maternal acetate supplementation prevented. Additionally, acetate supplementation increased the protein level of SCFA receptor G protein-coupled receptor 41 in the offspring kidneys. Further, minocycline administration and acetate supplementation significantly altered gut microbiota composition. Maternal acetate supplementation protected minocycline-induced hypertension accompanying by the increases in genera Roseburia, Bifidobacterium, and Coprococcus. In sum, our results cast new light on targeting gut microbial metabolites as early interventions to prevent the development of hypertension, which could help alleviate the global burden of hypertension.


Assuntos
Hipertensão , Efeitos Tardios da Exposição Pré-Natal , Acetatos/farmacologia , Animais , Pressão Sanguínea , Suplementos Nutricionais , Feminino , Humanos , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Lactação , Masculino , Exposição Materna/efeitos adversos , Minociclina/farmacologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Ratos , Ratos Sprague-Dawley
4.
Chin J Physiol ; 63(6): 294-300, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33380614

RESUMO

Platelet-rich plasma (PRP) is widely utilized in the treatment of sports injuries. However, potential systemic effects after localized PRP injection are unclear at present. In this prospective randomized study, 24 Taiwanese male athletes with tendinopathy were randomized into a PRP group (n = 13) or a saline group (n = 11). The concentrations of serum and urine biomarkers were quantified by enzyme-linked immunosorbent assay assessment as well as gas chromatographic and mass spectrometric analysis, respectively. The results showed no significant differences in serum levels of growth hormone, insulin-like growth factor-1, insulin-like growth factor-binding protein 3, vascular endothelial growth factor, platelet-derived growth factor-BB, or serum substance P(SP) between the two groups before intervention, nor at 1, 2, or 7 days after intervention. However, a significant decrease in the serum SP level 1 and 7 days after PRP injection was observed. Regarding urinary concentrations of metabolites of anabolic androgenic steroids (AAS), no between-group differences before intervention, nor at 1, 2, or 7 days after intervention, were observed. Our study failed to observe significant surge of serum anabolic molecules and urinary excretion of anabolic AAS metabolites after PRP injection.


Assuntos
Plasma Rico em Plaquetas , Biomarcadores , Humanos , Masculino , Estudos Prospectivos , Tendinopatia , Fator A de Crescimento do Endotélio Vascular
5.
Int J Mol Sci ; 21(19)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33008046

RESUMO

Maternal chronic kidney disease (CKD) during pregnancy causes adverse fetal programming. Nitric oxide (NO) deficiency, gut microbiota dysbiosis, and dysregulated renin-angiotensin system (RAS) during pregnancy are linked to the development of hypertension in adult offspring. We examined whether maternal adenine-induced CKD can program hypertension and kidney disease in adult male offspring. We also aimed to identify potential mechanisms, including alterations of gut microbiota composition, increased trimethylamine-N-oxide (TMAO), reduced NO bioavailability, and dysregulation of the RAS. To construct a maternal CKD model, female Sprague-Dawley rats received regular chow (control group) or chow supplemented with 0.5% adenine (CKD group) for 3 weeks before pregnancy. Mother rats were sacrificed on gestational day 21 to analyze placentas and fetuses. Male offspring (n = 8/group) were sacrificed at 12 weeks of age. Adenine-fed rats developed renal dysfunction, glomerular and tubulointerstitial damage, hypertension, placental abnormalities, and reduced fetal weights. Additionally, maternal adenine-induced CKD caused hypertension and renal hypertrophy in adult male offspring. These adverse pregnancy and offspring outcomes are associated with alterations of gut microbiota composition, increased uremic toxin asymmetric and symmetric dimethylarginine (ADMA and SDMA), increased microbiota-derived uremic toxin TMAO, reduced microbiota-derived metabolite acetate and butyrate levels, and dysregulation of the intrarenal RAS. Our results indicated that adenine-induced maternal CKD could be an appropriate model for studying uremia-related adverse pregnancy and offspring outcomes. Targeting NO pathway, microbiota metabolite TMAO, and the RAS might be potential therapeutic strategies to improve maternal CKD-induced adverse pregnancy and offspring outcomes.


Assuntos
Hipertensão/metabolismo , Óxido Nítrico/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Insuficiência Renal Crônica/metabolismo , Adenina/efeitos adversos , Adenina/metabolismo , Animais , Modelos Animais de Doenças , Disbiose/genética , Disbiose/microbiologia , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Hipertensão/etiologia , Hipertensão/microbiologia , Hipertensão/patologia , Herança Materna/genética , Óxido Nítrico/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/microbiologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/microbiologia , Insuficiência Renal Crônica/patologia , Sistema Renina-Angiotensina/genética
6.
Int J Mol Sci ; 21(16)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32824071

RESUMO

Cardiovascular disease (CVD) begins early in children with chronic kidney disease (CKD). Reduced nitric oxide (NO) bioavailability has been associated with increased CVD in CKD patients. Children tend to have more exposure to acrylamide, one of the most common toxins in food. We aimed to determine whether urinary levels of acrylamide metabolites N-acetyl-S-(2-carbamoylethyl)-cysteine (AAMA) and N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-cysteine (GAMA) are associated with CV risk markers in children with CKD. Data on 112 children and adolescents ages three to 18 years old with CKD stage G1-G4 are reported. We observed that 24 h ambulatory blood pressure monitoring (ABPM) abnormalities were greater, and left ventricular (LV) mass and ambulatory arterial stiffness index (AASI) were higher in children with CKD stage G2-G4 versus G1. Patients with CKD stage G2-G4 had a lower urinary acrylamide level, but a higher AAMA-to-GAMA ratio than those with CKD stage G1. Urinary acrylamide level was negatively associated with high systolic blood pressure (SBP) and diastolic BP (DBP) load on 24 h ABPM. Lower urinary levels of acrylamide, AAMA, and GAMA were correlated with LV mass. Additionally, GAMA are superior to AAMA related to NO-related parameters, namely citrulline and symmetric dimethylarginine (SDMA). This study suggests that determinations of urinary acrylamide level and its metabolites in the early stages of pediatric CKD may identify patients at risk of CVD. Further studies should clarify mechanisms underlying acrylamide exposure to define the treatment for protection against CVD.


Assuntos
Acrilamida/metabolismo , Doenças Cardiovasculares/epidemiologia , Metaboloma , Insuficiência Renal Crônica/metabolismo , Acrilamida/urina , Adolescente , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/urina , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Óxido Nítrico/sangue , Análise de Regressão , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/urina , Fatores de Risco
7.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752013

RESUMO

Gut microbiota-dependent metabolites, in particular trimethylamine (TMA), are linked to hypertension. Maternal 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure or consumption of food high in fructose (HFR) can induce hypertension in adult offspring. We examined whether 3,3-maternal dimethyl-1-butanol (DMB, an inhibitor of TMA formation) therapy can protect adult offspring against hypertension arising from combined HFR and TCDD exposure. Pregnant Sprague-Dawley rats received regular chow or chow supplemented with fructose (60% diet by weight) throughout pregnancy and lactation. Additionally, the pregnant dams received TCDD (200 ng/kg BW orally) or a corn oil vehicle on days 14 and 21 of gestation, and days 7 and 14 after birth. Some mother rats received 1% DMB in their drinking water throughout pregnancy and lactation. Six groups of male offspring were studied (n = 8 for each group): regular chow (CV), high-fructose diet (HFR), regular diet+TCDD exposure (CT), HFR+TCDD exposure (HRT), high-fructose diet+DMB treatment (HRD), and HFR+TCDD+DMB treatment (HRTD). Our data showed that TCDD exacerbates HFR-induced elevation of blood pressure in male adult offspring, which was prevented by maternal DMB administration. We observed that different maternal insults induced distinct enterotypes in adult offspring. The beneficial effects of DMB are related to alterations of gut microbiota, the increase in nitric oxide (NO) bioavailability, the balance of the renin-angiotensin system, and antagonization of aryl hydrocarbon receptor (AHR) signaling. Our findings cast new light on the role of early intervention targeting of the gut microbiota-dependent metabolite TMA, which may allow us to prevent the development of hypertension programmed by maternal excessive fructose intake and environmental dioxin exposure.


Assuntos
Dieta da Carga de Carboidratos/efeitos adversos , Microbioma Gastrointestinal , Hipertensão , Exposição Materna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal , Animais , Dioxinas/efeitos adversos , Feminino , Frutose/efeitos adversos , Masculino , Metilaminas/farmacologia , Gravidez , Substâncias Protetoras/farmacologia , Ratos , Ratos Sprague-Dawley
8.
Int J Mol Sci ; 19(12)2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30469463

RESUMO

Despite cardiovascular disease (CVD) being the leading cause of morbidity and mortality in chronic kidney disease (CKD), less attention has been paid to subclinical CVD in children and adolescents with early CKD stages. Gut microbiota and their metabolite, trimethylamine N-oxide (TMAO), have been linked to CVD. Ambulatory blood-pressure monitoring (ABPM) and arterial-stiffness assessment allow for early detection of subclinical CVD. We therefore investigated whether gut microbial composition and TMAO metabolic pathway are correlated with blood-pressure (BP) load and vascular abnormalities in children with early-stage CKD. We enrolled 86 children with G1⁻G3 CKD stages. Approximately two-thirds of CKD children had BP abnormalities on ABPM. Children with CKD stage G2⁻G3 had a higher uric acid level (6.6 vs. 4.8 mg/dL, p < 0.05) and pulse-wave velocity (4.1 vs. 3.8 m/s, p < 0.05), but lower TMAO urinary level (209 vs. 344 ng/mg creatinine, p < 0.05) than those with stage G1. Urinary TMAO level was correlated with the abundances of genera Bifidobacterium (r = 0.307, p = 0.004) and Lactobacillus (r = 0.428, p < 0.001). CKD children with abnormal ABPM profile had a lower abundance of the Prevotella genus than those with normal ABPM (p < 0.05). Our results highlight the link between gut microbiota, microbial metabolite TMAO, BP load, and arterial-stiffness indices in children with early-stage CKD. Early assessments of these surrogate markers should aid in decreasing cardiovascular risk in childhood CKD.


Assuntos
Pressão Sanguínea , Microbioma Gastrointestinal , Metilaminas/urina , Insuficiência Renal Crônica/microbiologia , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Insuficiência Renal Crônica/fisiopatologia , Insuficiência Renal Crônica/urina
9.
Nutrients ; 15(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36771404

RESUMO

Resveratrol (REV) is a plant polyphenol with a plethora of beneficial properties. We previously enhanced the efficacy of REV via esterification of REV with butyrate to form resveratrol butyrate ester (RBE). Compared with REV, RBE exhibits higher bioavailability and better antioxidant effects. Hypertension can originate in early life because of maternal toxic chemical exposure. This study aims to examine the effectiveness of RBE in the protection of offspring hypertension induced by maternal di-2-ethylhexylphthalate (DEHP) exposure and to explore the underlying mechanisms. DEHP (10 mg/kg/day) was used as oral gavage to pregnant rats during gestation and lactation. The control group received the vehicle. Three groups of DEHP-exposed dams received REV (6.67 mg/kg/day), or low-dose (3.33 mg/kg/day) or high-dose (6.67 mg/kg/day) RBE in drinking water during gestation and lactation. Perinatal DEHP exposure resulted in hypertension and bodyweight gain in adult male offspring, which was prevented by high-dose RBE. REV supplementation attenuated DEHP exposure-induced increases in blood pressure but not bodyweight. High-dose RBE decreased renal oxidative damage, increased plasma butyrate concentrations, and altered short chain fatty acid receptor (SCFA) expression. Low-dose RBE treatment reduced downstream mediators of the acryl hydrocarbon receptor (AHR) signaling pathway. Moreover, DEHP exposure, REV and RBE treatment differentially shaped the offspring's gut microbiota. In particular, high-dose RBE increased the abundance of the genus Duncaniella. The beneficial effects of RBE treatment were related to reducing oxidative damage, increasing plasma butyrate concentrations, downregulating SCFA receptor expression, antagonizing AHR signaling, and altering the gut microbiota. This study provides the first evidence of RBE as a novel plant polyphenol bioproduct targeting the oxidative stress and gut microbiota to protect against maternal DEHP exposure-primed offspring hypertension.


Assuntos
Dietilexilftalato , Hipertensão , Efeitos Tardios da Exposição Pré-Natal , Resveratrol , Animais , Feminino , Gravidez , Ratos , Butiratos , Suplementos Nutricionais , Dietilexilftalato/toxicidade , Ésteres , Ácidos Graxos Voláteis , Hipertensão/induzido quimicamente , Hipertensão/prevenção & controle , Exposição Materna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Resveratrol/farmacologia
10.
Nutrients ; 15(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37960279

RESUMO

Antrodia cinnamomea (AC), a medicinal mushroom, has multiple beneficial actions, such as acting as a prebiotic. The incidence of chronic kidney disease (CKD) in children has steadily increased year by year, and CKD is related to gut microbiota dysbiosis. Herein, we investigated the renoprotection of solid-state cultivated AC in adenine-induced CKD juvenile rats. CKD was induced in 3-week-old male rats by feeding with adenine (0.5%) for three weeks. Treated groups received oral administration of AC extracts at either a low (10 mg/kg/day) or high dose (100 mg/kg/day) for six weeks. At nine weeks of age, the rats were sacrificed. Renal outcomes, blood pressure, and gut microbiome composition were examined. Our results revealed that AC treatment, either low- or high-dose, improved kidney function, proteinuria, and hypertension in CKD rats. Low-dose AC treatment increased plasma concentrations of short-chain fatty acids (SCFAs). Additionally, we observed that AC acts like a prebiotic by enriching beneficial bacteria in the gut, such as Akkermansia and Turicibacter. Moreover, the beneficial action of AC against CKD-related hypertension might also be linked to the inhibition of the renin-angiotensin system. This study brings new insights into the potential application of AC as a prebiotic dietary supplement in the prevention and treatment of pediatric CKD.


Assuntos
Hipertensão , Insuficiência Renal Crônica , Humanos , Criança , Ratos , Masculino , Animais , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/prevenção & controle , Insuficiência Renal Crônica/complicações , Rim , Hipertensão/prevenção & controle , Prebióticos , Adenina/farmacologia
11.
Antioxidants (Basel) ; 12(7)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37507884

RESUMO

Hydrogen sulfide (H2S) and related reactive sulfur species are implicated in chronic kidney disease (CKD) and hypertension. Offspring born to CKD-afflicted mothers could develop hypertension coinciding with disrupted H2S and nitric oxide (NO) signaling pathways as well as gut microbiota. Thiosulfate, a precursor of H2S and an antioxidant, has shown anti-hypertensive effects. This study aimed to investigate the protective effects of sodium thiosulfate (STS) in a rat model of maternal CKD-induced hypertension. Before mating, CKD was induced through feeding 0.5% adenine chow for 3 weeks. Mother rats were given a vehicle or STS at a dosage of 2 g/kg/day in drinking water throughout gestation and lactation. Perinatal STS treatment protected 12-week-old offspring from maternal CKD-primed hypertension. The beneficial effects of STS could partially be explained by the enhancement of both H2S and NO signaling pathways and alterations in gut microbiota. Not only increasing beneficial microbes but maternal STS treatment also mediates several hypertension-associated intestinal bacteria. In conclusion, perinatal treatment with STS improves maternal CKD-primed offspring hypertension, suggesting that early-life RSS-targeting interventions have potential preventive and therapeutic benefits, awaiting future translational research.

12.
Antioxidants (Basel) ; 12(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38136178

RESUMO

Taurine is a natural antioxidant with antihypertensive properties. Maternal chronic kidney disease (CKD) has an impact on renal programming and increases the risk of offspring hypertension in later life. The underlying mechanisms cover oxidative stress, a dysregulated hydrogen sulfide (H2S) system, dysbiotic gut microbiota, and inappropriate activation of the renin-angiotensin-aldosterone system (RAAS). We investigated whether perinatal taurine administration enables us to prevent high blood pressure (BP) in offspring complicated by maternal CKD. Before mating, CKD was induced through feeding chow containing 0.5% adenine for 3 weeks. Taurine was administered (3% in drinking water) during gestation and lactation. Four groups of male offspring were used (n = 8/group): controls, CKD, taurine-treated control rats, and taurine-treated rats with CKD. Taurine treatment significantly reduced BP in male offspring born to mothers with CKD. The beneficial effects of perinatal taurine treatment were attributed to an augmented H2S pathway, rebalance of aberrant RAAS activation, and gut microbiota alterations. In summary, our results not only deepen our knowledge of the mechanisms underlying maternal CKD-induced offspring hypertension but also afford us the impetus to consider taurine-based intervention as a promising preventive approach for future clinical translation.

13.
Antioxidants (Basel) ; 12(2)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36830071

RESUMO

Hypertension is the most common complication of chronic kidney disease (CKD) in children but is still poorly controlled. Nitric oxide (NO) deficiency plays a pivotal role in CKD and hypertension. NO is known to have health benefits, while NO typically has a short half-life and is not specifically targeted. In this study, we used a pediatric CKD model, which was induced in young rats by feeding them 0.25% adenine. We investigated two different NO donors, namely S-nitrosoglutathione (GSNO) and diethylenetriamine/NO adduct (DETA NONOate) via intraperitoneal injection at 10 mg/kg/day daily for 3 weeks. GSNO was delivered by Cu2+-doped zeolitic imidazolate framework (Cu/ZIF-8) nanoparticles to generate NO. As a result, we observed Cu/ZIF-8 nanoparticles were successfully loaded with GSNO and were able to release NO. Young rats fed with adenine displayed kidney dysfunction and hypertension at 9 weeks of age, which were prevented by GSNO-loaded nanoparticle or DETA NONOate treatment. GSNO-loaded nanoparticles reduced CKD-induced hypertension, which was related to an enhanced endogenous NO-generating system, reduced renal oxidative stress, and downregulated several components belonging to the classic renin-angiotensin (RAS) system. Our results cast new light on targeting NO delivery through the use of nanoparticles aiming to improve child-focused outcomes related to CKD worthy of clinical translation.

14.
Nutrients ; 15(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36771342

RESUMO

Chronic kidney disease (CKD) remains a public health problem. Certain dietary supplements can assist in the prevention of CKD progression. In this regard, resveratrol is a polyphenol and has a potential therapeutic role in alleviating CKD. We previously utilized butyrate in order to improve the bioavailability of resveratrol via esterification and generated a resveratrol butyrate monoester (RBM). In this study, the hypothesis that RBM supplementation is able to protect against kidney dysfunction and hypertension was tested by using an adenine-induced CKD model. For this purpose, three-week-old male Sprague Dawley rats (n = 40) were equally categorized into: group 1-CN (sham control); group 2-CKD (adenine-fed rats); group 3-REV (CKD rats treated with 50 mg/L resveratrol); group 4-MEL (CKD rats treated with 25 mg/L RBM); and group 5-MEH (CKD rats treated with 50 mg/L RBM). At the end of a 12-week period, the rats were then euthanized. The adenine-fed rats displayed hypertension and kidney dysfunction, which were attenuated by dietary supplementation with RBM. The CKD-induced hypertension coincided with: decreased nitric oxide (NO) bioavailability; augmented renal protein expression of a (pro)renin receptor and angiotensin II type 1 receptor; and increased oxidative stress damage. Additionally, RBM and resveratrol supplementation shaped distinct gut microbiota profiles in the adenine-treated CKD rats. The positive effect of high-dose RBM was shown together with an increased abundance of the genera Duncaniella, Ligilactobacillus, and Monoglobus, as well as a decrease in Eubacterium and Schaedierella. Importantly, the mechanism of action of the RBM supplementation may be related to the restoration of NO, rebalancing of the RAS, a reduction in oxidative stress, and alterations to the gut microbiota. Moreover, RBM supplementation shows promise for the purposes of improving CKD outcomes and hypertension. As such, further translation to human studies is warranted.


Assuntos
Hipertensão , Insuficiência Renal Crônica , Animais , Masculino , Ratos , Adenina/farmacologia , Butiratos/metabolismo , Suplementos Nutricionais , Rim/metabolismo , Estresse Oxidativo , Ratos Sprague-Dawley , Resveratrol/farmacologia
15.
Biomedicines ; 11(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38137539

RESUMO

Children suffering from chronic kidney disease (CKD) have a high risk of cardiovascular disease (CVD). The early detection and diagnosis of subclinical CVD in pediatric CKD can reduce mortality later in life. Plasma factor 4 (PF4) is a chemokine released by activated platelets. We examined whether or not PF4 in the plasma and urine, its kidney function normalized ratio, and fractional excretion have differential associations with CVD risk markers in 139 youths aged 3 to 18 years old with CKD stages G1-G4. Significant negative correlations were observed between plasma PF4 and cardiovascular surrogate markers, such as the left ventricular mass index (LVMI), carotid intima-media thickness (cIMT), and pulse wave velocity (PWV). The plasma PF4/creatinine (Cr) ratio was lower in CKD children with a high daytime BP and 24 h BP, high BP load, and nocturnal non-dipping status. After adjusting for confounders, the plasma PF4 and plasma PF4/Cr ratio still independently predicted an abnormal ABPM profile. In addition, both the plasma PF4 and plasma PF4/Cr ratio presented a negative correlation with the L-arginine and asymmetric dimethylarginine ratio. These findings provide convincing evidence supporting the link between PF4 and CVD markers in pediatric CKD. Our study highlights the importance of further research to assess the performance of PF4-related biomarkers in predicting CVD events and CKD progression in children with CKD.

16.
Nutrients ; 15(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049522

RESUMO

Maternal nutrition has a key role in the developmental programming of adult disease. Excessive maternal fructose intake contributes to offspring hypertension. Newly discovered evidence supports the idea that early-life gut microbiota are connected to hypertension later in life. Short-chain fatty acids (SCFAs), butyrate, and propionate are microbiota-derived metabolites, also known as postbiotics. The present study aimed to determine whether maternal butyrate or propionate supplementation can protect offspring from hypertension using a maternal high-fructose (HF) diet rat model. Female Sprague Dawley rats were allocated during pregnancy and lactation to (1) regular chow (ND); (2) 60% high-fructose diet (HF); (3) HF diet plus butyrate (HFB, 400 mg/kg/day); and (4) HF diet plus propionate (HFP, 200 mmol/L). Male offspring were sacrificed at 12 weeks of age. The maternal HF diet impaired the offspring's BP, which was prevented by perinatal butyrate or propionate supplementation. Both butyrate and propionate treatments similarly increased plasma concentrations of propionic acid, isobutyric acid, and valeric acid in adult offspring. Butyrate supplementation had a more profound impact on trimethylamine N-oxide metabolism and nitric oxide parameters. Whilst propionate treatment mainly influenced gut microbiota composition, it directly altered the abundance of genera Anaerovorax, Lactobacillus, Macellibacteroides, and Rothia. Our results shed new light on targeting gut microbiota through the use of postbiotics to prevent maternal HF intake-primed hypertension, a finding worthy of clinical translation.


Assuntos
Hipertensão , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Humanos , Ratos , Masculino , Feminino , Animais , Propionatos , Ratos Sprague-Dawley , Butiratos , Frutose/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Hipertensão/induzido quimicamente , Hipertensão/prevenção & controle , Dieta , Dieta Hiperlipídica
17.
Nutrients ; 14(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36364887

RESUMO

Garlic (Allium sativum) is a functional food, having hydrogen sulfide (H2S)-releasing capacity, which exhibits considerable effects on hypertension and gut microbiota. H2S is strongly associated with hypertension and chronic kidney disease (CKD). Maternal CKD leads to hypertension in adult rat progeny, which was linked to disruption of the gut microbiota. This study validated the benefits of perinatal garlic oil supplementation against offspring hypertension induced by maternal CKD via modulation of H2S signaling, nitric oxide (NO), and the gut microbiota. Before pregnancy, female rats received a 0.5% adenine diet for 3 weeks to develop an animal model to mimic human CKD. Garlic oil (100 mg/kg/day) or vehicle was administered to pregnant rats by oral gavage during gestation and lactation. Perinatal garlic oil supplementation protected against maternal CKD-induced hypertension in offspring at 12 weeks of age. The beneficial effects of garlic oil are associated with enhanced H2S signaling, increased NO bioavailability, and shifts in gut microbiota. Perinatal garlic oil supplementation reduces abundance of genera Variovorax, Nocardia, Sphingomonas, and Rhodococcus. Our findings provide insight into the role of early H2S-targeted intervention as a preventive strategy in hypertension for further translational research.


Assuntos
Alho , Hipertensão , Pré-Eclâmpsia , Efeitos Tardios da Exposição Pré-Natal , Insuficiência Renal Crônica , Gravidez , Humanos , Ratos , Feminino , Animais , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Ratos Sprague-Dawley , Hipertensão/prevenção & controle , Insuficiência Renal Crônica/prevenção & controle , Óxido Nítrico , Suplementos Nutricionais
18.
Nutrients ; 14(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36014941

RESUMO

Emerging evidence supports that early-life disturbance of gut microbiota has an impact on adult disease in later life. Offspring hypertension can be programmed by maternal chronic kidney disease (CKD). Conversely, perinatal use of gut microbiota-targeted therapy has been implemented to reverse programming processes and prevent hypertension. Short-chain fatty acids (SCFAs), the major gut microbiota-derived metabolites, can be applied as postbiotics. Propionate, one of predominant SCFAs, has been shown to have antihypertensive property. We examined whether perinatal propionate supplementation can prevent offspring hypertension induced by maternal CKD. CKD was induced by chow supplemented with 0.5% adenine for 3 weeks before pregnancy. Propionate (P) was supplemented at 200 mmol/L in drinking water during pregnancy and lactation. Male offspring were divided into four groups (n = 7-8/group): control, CKD, control+propionate (CP), and CKD+propionate (CKDP). Maternal CKD-induced offspring hypertension was reversed by perinatal propionate supplementation. The protective effects of perinatal propionate treatment were related to increased propionate-generating bacteria Clostridium spp. and plasma propionate level, increased expression of renal G protein-coupled receptor 41 (GPR41, a SCFA receptor), augmentation of α-diversity, and shifts in gut microbiota composition. In summary, our results highlight that maternal CKD-induced offspring hypertension can be prevented by the use of gut microbial metabolite SCFAs in early life, which could shed light on the prevention of the current hypertension pandemic.


Assuntos
Hipertensão , Insuficiência Renal Crônica , Animais , Suplementos Nutricionais , Ácidos Graxos Voláteis/metabolismo , Feminino , Hipertensão/metabolismo , Masculino , Gravidez , Propionatos/farmacologia , Ratos , Ratos Sprague-Dawley , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/prevenção & controle
19.
Antioxidants (Basel) ; 11(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35326133

RESUMO

Maternal chronic kidney disease (CKD) is linked to offspring hypertension. The gut microbiome and its tryptophan metabolites, nitric oxide (NO), and renin-angiotensin system (RAS) are closely related to the development of hypertension. Hydrogen sulfide (H2S) has shown an anti-hypertensive effect. Our objective was to test whether l- or d-cysteine supplementation in pregnancy can prevent hypertension programmed by maternal CKD in adult offspring and to explore the protective mechanisms. CKD was induced in pregnant Sprague Dawley rats by a 0.5% adenine diet for 3 weeks. l- or d-cysteine was supplemented at 8 mmol/kg body weight/day during pregnancy. Male offspring were sacrificed at the age of 12 weeks (n = 8 per group). Maternal CKD-induced hypertension was similarly prevented by l- or d-cysteine supplementation. The protective effects of l- and d-cysteine are related to reducing oxidative stress, rebalancing the RAS, and reshaping the gut microbiome. l-cysteine therapy protected adult offspring against hypertension and was associated with enhanced H2S production, restoration of NO bioavailability, enhancement of beneficial genera Oscillibacter and Butyricicoccus, depletion of indole-producing genera Alistipes and Akkermansia, and the reduction of several indole metabolites. d-cysteine treatment increased kynurenic acid, 3-hydroxykynurenine, and xanthurenic acid in the kynurenine pathway, decreased 5-hydroxytryptophan and serotonin in the serotonin pathway, and enriched genera Bacteroides and Odoribacter abundance. In summary, these results suggest that l- and d-cysteine protect against maternal CKD-induced offspring hypertension, likely by enhancing H2S production, modulating gut microbiota and its derived metabolites, and the restoration of NO and RAS.

20.
Antioxidants (Basel) ; 11(1)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35052651

RESUMO

Hypertension is highly prevalent in chronic kidney disease (CKD). Hydrogen sulfide (H2S) is an endogenously produced gasotransmitter with vasodilator properties. We, hence, investigated whether oral administration of sodium thiosulfate (STS), a clinically applicable H2S-based therapy, can exert a protective effect against hypertension in an adenine-induced CKD rat model. Eight-week-old male Sprague-Dawley rats were fed with 0.5% adenine chow for 3 weeks to induce CKD. After 1 week, the rats were divided into two groups: one without and one with STS (2 g/kg body weight/day) in drinking water for 2 weeks. Treatment with STS lowered systolic and diastolic blood pressure by 7 and 9 mm Hg, respectively. Renal H2S-generating enzyme expression was inhibited by CKD, while STS therapy increased plasma levels of H2S and thiosulfate. Additionally, restoration of nitric oxide bioavailability and rebalance of the renin-angiotensin system may contribute to the protective effects of STS. Our data suggest that the oral administration of STS improves hypertension in an adenine-induced CKD model, which brings us closer to the clinical translation of H2S-targeting therapy in CKD-induced hypertension.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA