Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Small ; 20(2): e2305317, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670223

RESUMO

Stimuli-responsive ion nanochannels have attracted considerable attention in various fields because of their remote controllability of ionic transportation. For photoresponsive ion nanochannels, however, achieving precise regulation of ion conductivity is still challenging, primarily due to the difficulty of programmable structural changes in confined environments. Moreover, the relationship between noncontact photo-stimulation in nanoscale and light-induced ion conductivity has not been well understood. In this work, a versatile design for fabricating guard cell-inspired photoswitchable ion channels is presented by infiltrating azobenzene-cross-linked polymer (AAZO-PDAC) into nanoporous anodic aluminum oxide (AAO) membranes. The azobenzene-cross-linked polymer is formed by azobenzene chromophore (AAZO)-cross-linked poly(diallyldimethylammonium chloride) (PDAC) with electrostatic interactions. Under UV irradiation, the trans-AAZO isomerizes to the cis-AAZO, causing the volume compression of the polymer network, whereas, in darkness, the cis-AAZO reverts to the trans-AAZO, leading to the recovery of the structure. Consequently, the resultant nanopore sizes can be manipulated by the photomechanical effect of the AAZO-PDAC polymers. By adding ionic liquids, the ion conductivity of the light-driven ion nanochannels can be controlled with good repeatability and fast responses (within seconds) in multiple cycles. The ion channels have promising potential in the applications of biomimetic materials, sensors, and biomedical sciences.

2.
Chemistry ; 29(43): e202301012, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37173870

RESUMO

Over the past few decades, stimuli-responsive materials have been widely applied to porous surfaces. Permeability and conductivity control of ions confined in nanochannels modified with stimuli-responsive materials, however, have been less investigated. In this work, the permeability and conductivity control of ions confined in nanochannels of anodic aluminum oxide (AAO) templates modified with thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) brushes are demonstrated. By surface-initiated atom transfer radical polymerization (SI-ATRP), PNIPAM brushes are successfully grafted onto the hexagonally packed cylindrical nanopores of AAO templates. The surface hydrophilicities of the membranes can be reversibly altered because of the lower critical solution temperature (LCST) behavior of the PNIPAM polymer brushes. From electrochemical impedance spectroscopy (EIS) analysis, the temperature-gating behaviors of the AAO-g-PNIPAM membranes exhibit larger impedance changes than those of the pure AAO membranes at higher temperatures because of the aggregation of the grafted PNIPAM chains. The reversible surface properties caused by the extended and collapsed states of the polymer chains are also demonstrated by dye release tests. The smart thermo-gated and ion-controlled nanoporous membranes are suitable for future smart membrane applications.

3.
Opt Express ; 30(16): 29388-29400, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36299114

RESUMO

Relativistic vortex laser has drawn increasing attention in the laser-plasma community owing to its potential applications in various domains, e.g., generation of energetic charged particles with orbital angular momentum (OAM), high OAM X/γ-ray emission, high harmonics generation, and strong axial magnetic-field production. However, the generation of such relativistic vortex laser is still a challenge to the current laser technology. Using micro-structure targets named axial line-focused spiral zone plate (ALFSZP), we propose a novel scheme for ultra-intense vortex laser generation. In the scheme, a relativistic Gaussian laser pulse irradiates an ALFSZP, and diffracts as it passes through the ALFSZP. Due to the focusing and radial Hilbert transform capabilities of the ALFSZP, the seed laser is converted efficiently to a vortex one which is then well focused in a tunable focal volume. Three-dimensional particle-in-cell simulations indicate that using a seed laser pulse with intensity of 1.3 × 1020 W/cm2, the vortex laser intensity achieved is as high as 1.3 × 1021 W/cm2 with the averaged angular momentum per photon up to 0.73ℏ, promising diverse applications in various fields aforementioned.

4.
Langmuir ; 38(2): 801-809, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-34951309

RESUMO

Surface-enhanced Raman scattering (SERS) has been a useful sensing technique, in which inelastic light scattering can be significantly enhanced by absorbing molecules onto rough metal surfaces or nanoparticles. Although many methods have been developed to prepare SERS substrates, it is still highly desirable and challenging to design SERS substrates, especially with highly ordered and controlled three-dimensional (3D) structures. In this work, we develop novel SERS substrates with regular volcano-shaped polymer structures using the versatile solvent on-film annealing method. Polystyrene (PS) nanospheres are first synthesized by surfactant-free emulsion polymerization and assembled on poly(methyl methacrylate) (PMMA) films. After annealing in acetic acid vapors, PMMA chains are selectively swollen and wet the surfaces of the PS nanospheres. By selectively removing the PS nanospheres using cyclohexane, volcano-shaped PMMA films can be obtained. Compared with flat PMMA films with water contact angles of ∼74°, volcano-shaped PMMA films exhibit higher water contact angles of ∼110° due to the sharp features and rough surfaces. The volcano-shaped PMMA films are then coated with gold nanoparticles (AuNPs) as SERS substrates. Using rhodamine 6G as the probe molecules, the SERS results show that the Raman signals of the volcano-shaped PMMA/AuNP hybrid substrates are much higher than those of the pristine PMMA films and PMMA films with AuNPs. For the volcano-shaped PMMA/AuNP hybrid substrates using 400 nm PS nanospheres, a high enhancement factor (EF) value of ∼1.12 × 105 with a detection limit of 10-8 M is obtained in a short integration time of 1 s. A linear calibration line with an R2 value of 0.918 is also established, demonstrating the ability to determine the concentrations of the analytes. This work offers significant insight into developing novel SERS substrates, which is crucial for improving the detection limits of analytes.

5.
BMC Neurol ; 22(1): 419, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357846

RESUMO

BACKGROUND: Kernohan-Woltman notch phenomenon (KWNP) classically occurs when a lesion causes compression of the contralateral cerebral peduncle against the tentorium, resulting in ipsilateral hemiparesis. It has been studied clinically, radiologically and electrophysiologically which all confirmed to cause false localizing motor signs. Here, we demonstrate the potential use of fluorine-18 fluorodeoxyglucose (18 F-FDG) positron emission tomography/computed tomography (PET/CT) to identify KWNP caused by an epidural hematoma. CASE PRESENTATION: A 29-year-old male patient post right-sided traumatic brain injury presenting with persistent ipsilateral hemiparesis. Patient underwent decompressive craniotomy and intracranial hematoma evacuation. Brain magnetic resonance imaging in the postoperative period showed a subtle lesion in the left cerebral peduncle. PET/CT was performed to exclude early brain tumor and explain his ipsilateral hemiparesis. PET/CT imaging demonstrated a focal region of intense 18 F-FDG uptake in the left cerebral peduncle. Throughout the treatment in outpatient neurorehabilitation unit, the patient exhibited a gradual recovery of his right hemiparesis. CONCLUSION: In our case report, for the first time, PET/CT offered microstructural and functional confirmation of KWNP. Moreover, our case suggests that 18 F-FDG PET/CT may serve as an important reference for the probability of functional recovery.


Assuntos
Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Masculino , Humanos , Adulto , Prognóstico , Paresia/diagnóstico por imagem , Paresia/etiologia , Hematoma/complicações
6.
Chemistry ; 27(60): 14981-14988, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34369018

RESUMO

Composite polymer electrolytes (CPEs) with smart, stimuli-responsive characteristics have gained considerable attention owing to their noninvasive manipulation and applications in future technologies. To address this potential, in this work, we demonstrate photoresponsive composite polymer electrolytes, consisting of gel polymer electrolyte (GPE) and spiropyran-immobilized nanoporous anodic aluminum oxide (SP-AAO) templates. Under UV irradiation, the close SP form isomerizes to the open merocyanine (MC) form, creating extremely polarized AAO surfaces; whereas, under visible light irradiation, the MC form reverts to the SP form, creating neutral surface conditions. The electrostatic interactions between ions and AAO surfaces are investigated by attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. Moreover, the behavior of ionic conductivity of the GPE@SP-AAO is found to be consistent with the kinetics of isomerization tracked by UV-Vis spectroscopy. This work provides a promising platform for developing next-generation photoelectronic smart devices.


Assuntos
Nanoporos , Polímeros , Benzopiranos , Eletrólitos , Indóis , Nitrocompostos
7.
Macromol Rapid Commun ; 42(9): e2000723, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33543553

RESUMO

Ordered arrays of polymer nanostructures have been widely investigated because of their promising applications such as solar-cell devices, sensors, and supercapacitors. It remains a great challenge, however, to manipulate the shapes of individual nanostructures in arrays for tailoring specific properties. In this study, an effective strategy to prepare anisotropic polymer nanopillar arrays via photo-fluidization is presented. Azobenzene-containing polymers (azopolymers) are first infiltrated into the nanopores of ordered anodic aluminum oxide (AAO) templates. After the removal of the AAO templates using weak bases, azopolymer nanopillar arrays can be prepared. Upon exposure of linearly polarized lights, azobenzene groups in the azopolymers undergo trans-cis-trans photoisomerization, causing mass migration and elongation of the nanopillar along with the polarization directions. As a result, anisotropic nanopillar arrays can be fabricated, of which the deformation degrees are controlled by the illumination times. Furthermore, patterned nanopillar arrays can also be constructed with designed photomasks. This work presents a practical and versatile strategy to fabricate arrays of anisotropic nanostructures for future technical applications.


Assuntos
Óxido de Alumínio , Nanoporos , Eletrodos , Lasers , Polímeros
8.
Macromol Rapid Commun ; 41(11): e2000088, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32329178

RESUMO

Surface properties are essential for substrates exhibiting high sensitivity in surface-enhanced Raman scattering (SERS) applications. In this work, novel SERS hybrid substrates using polystyrene-block-poly(methyl methacrylate) and anodic aluminum oxide templates is presented. The hybrid substrates not only possess hierarchical porous nanostructures but also exhibit superhydrophilic surface properties with the water contact angle ≈0°. Such surfaces play an important role in providing uniform enhanced intensities over large areas (relative standard deviation ≈10%); moreover, these substrates are found to be highly sensitive (limit of detection ≈10-12 m for rhodamine 6G (R6G)). The results show that the hybrid SERS substrates can achieve the simultaneous detection of multicomponent mixtures of different target molecules, such as R6G, crystal violet, and methylene blue. Furthermore, the bending experiments show that about 70% of the SERS intensities are maintained after bending from ≈30° to 150°.


Assuntos
Óxido de Alumínio/química , Polímeros/química , Rodaminas/análise , Molhabilidade , Eletrodos , Tamanho da Partícula , Análise Espectral Raman , Propriedades de Superfície
9.
Macromol Rapid Commun ; 41(8): e2000035, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32125049

RESUMO

1D polymer nanomaterials have attracted significant interest in recent years because of their unique properties and promising applications in various fields. It is, however, still a challenge to fabricate polymer nanoarrays with desired sizes and controlled morphologies. Here, an unprecedented approach, the laser-assisted nanowetting (LAN) method, to selectively fabricate polymer nanoarrays is presented. Polystyrene (PS) is blended with gold nanorods (AuNRs), which are used to absorb the energy from the laser. After the blend films are brought in contact with AAO templates, the AuNRs at regions shone by the laser beams absorb the energy and heat the surrounding polymer chains, resulting in the formation of PS/AuNRs arrays in selected areas. This work paves a new research direction for developing template-based polymer nanomaterials.


Assuntos
Óxido de Alumínio/química , Ouro/química , Lasers , Nanoestruturas/química , Poliestirenos/química , Eletrodos , Tamanho da Partícula , Propriedades de Superfície , Molhabilidade
10.
Soft Matter ; 15(41): 8201-8209, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31588459

RESUMO

In this work, we study the structure transformations of cylinder-forming polystyrene-block-polydimethylsiloxane (PS31k-b-PDMS14.5k) confined in cylindrical nanopores. PS-b-PDMS nanotubes, nanospheres, and curved nanodiscs are ingeniously prepared by a facile template wetting strategy using anodic aluminum oxide (AAO) templates. Quantitative analyses of the structure transformations from nanospheres to curved nanodiscs are also conducted, showing that the lengths of the curved nanodiscs can be controlled by adjusting the annealing temperature and time. Furthermore, the PDMS domains of the nanostructures can be selectively etched using HF solutions, generating porous PS nanostructures. This work not only offers versatile routes to prepare block copolymer nanostructures with controlled shapes but also provides a deeper understanding of the structure transformation of block copolymers in confined geometries.

11.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 47(2): 181-186, 2018 05 25.
Artigo em Zh | MEDLINE | ID: mdl-30226314

RESUMO

OBJECTIVE: To investigate the effects of isoliquiritigenin on the migration and invasion of human glioma stem cells and the underlying mechanism. METHODS: The stem cell markers CD133 and Nestin in SHG44 human glioma stem cells were examined with immunofluorescence microscopy. The migration and invasion ability of glioma stem cells was determined by transwell method. The mRNA and protein expression of matrix metalloproteinase (MMP)-2 and MMP-9 were detected by real-time RT-PCR and Western blot, respectively. RESULTS: CD133 and Nestin were positive in SHG44 cells. The number of migrated cells in SHG44 cells treated with 20 and 80 µmol/L isoliquiritigenin for 48 h were significantly lower than that in control group (76±5 and 42±4 vs. 85±6, all P<0.01), and the number of migrated cells in 80 µmol/L isoliquiritigenin group was lower than that in 20 µmol/L isoliquiritigenin group (P<0.01). The numbers of cells crossing through membrane in 20 and 80 µmol/L isoliquiritigenin groups were 190±13 and 130±9, respectively, which were significantly lower than that in control group (230±14, all P<0.01), and the number of crossed cells in the 80 µmol/L isoliquiritigenin group was lower than that in 20 µmol/L isoliquiritigenin group (P<0.01). The mRNA and protein expression levels of MMP-2 and MMP-9 were decreased compared with control group (P<0.05 or P<0.01), and the expression levels in 80 µmol/L isoliquiritigenin group were lower than those in 20 µmol/L isoliquiritigenin group (P<0.05 or P<0.01). CONCLUSIONS: Isoliquiritigenin exhibits antitumor effects on glioma stem cells by inhibiting cell migration and invasion, which may be related to the down-regulation of MMP-2 and MMP-9.


Assuntos
Células-Tronco Neoplásicas , Linhagem Celular Tumoral , Movimento Celular , Chalconas , Regulação para Baixo , Glioma , Humanos , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Invasividade Neoplásica , RNA Mensageiro
12.
Sensors (Basel) ; 17(12)2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29211017

RESUMO

This paper proposes a new scheme of reconstructing current sensor faults and estimating unknown load disturbance for a permanent magnet synchronous motor (PMSM)-driven system. First, the original PMSM system is transformed into two subsystems; the first subsystem has unknown system load disturbances, which are unrelated to sensor faults, and the second subsystem has sensor faults, but is free from unknown load disturbances. Introducing a new state variable, the augmented subsystem that has sensor faults can be transformed into having actuator faults. Second, two sliding mode observers (SMOs) are designed: the unknown load disturbance is estimated by the first SMO in the subsystem, which has unknown load disturbance, and the sensor faults can be reconstructed using the second SMO in the augmented subsystem, which has sensor faults. The gains of the proposed SMOs and their stability analysis are developed via the solution of linear matrix inequality (LMI). Finally, the effectiveness of the proposed scheme was verified by simulations and experiments. The results demonstrate that the proposed scheme can reconstruct current sensor faults and estimate unknown load disturbance for the PMSM-driven system.

13.
Nat Commun ; 15(1): 916, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296994

RESUMO

Living in the global-changing era, intelligent and eco-friendly electronic components that can sense the environment and recycle or reprogram when needed are essential for sustainable development. Compared with solid-state electronics, composite hydrogels with multi-functionalities are promising candidates. By bridging the self-assembly of azobenzene-containing supramolecular complexes and MXene nanosheets, we fabricate a MXene-based composite gel, namely MXenegel, with reversible photo-modulated phase behavior. The MXenegel can undergo reversible liquefication and solidification under UV and visible light irradiations, respectively, while maintaining its conductive nature unchanged, which can be integrated into traditional solid-state circuits. The strategy presented in this work provides an example of light-responsive conducting material via supramolecular bridging and demonstrates an exciting platform for functional soft electronics.

14.
ACS Appl Mater Interfaces ; 16(2): 2716-2725, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38085978

RESUMO

Block copolymer composite electrolytes have gained extensive attention for their promising performance in ionic conductivity and mechanical properties, making them valuable for future technologies. The control of the ionic conductivity through the self-assembly of block copolymers, however, remains a great challenge, especially in confined environments. In this study, we prepare block copolymer composite electrolytes using polystyrene-block-poly(ethylene oxide) (PS-b-PEO, SEO) as the polymer matrix and anodic aluminum oxide (AAO) templates as the ceramic skeleton. The self-assembly of SEO creates nanoscale ion transport pathways in the PEO regions through ionic interactions with lithium salts. The nanopores of the AAO templates provide a confined environment for complex phase separation of SEO controlled by selective solvent vapor annealing. Our findings demonstrate that transforming self-assembled SEO structures allows for precise control of ion transport pathways with cylindrical structures exhibiting 20 times higher ionic conductivities than those of helical structures. For AAO templates with pore diameters of 20 nm (SEO-LiTFSI@AAO-20), the ionic conductivities are approximately 410 times higher than those with pore diameters of 200 nm (SEO-LiTFSI@AAO-200), owing to the larger specific surface areas within the smaller nanopores. Utilizing the self-assembly of SEO not only enables the construction of vertically aligned ion transport channels on various scales but also offers a fascinating approach to tailor the conductive capabilities of composite electrolytes, enhancing the ion transport efficiency and allowing for the flexible design of block copolymer composite electrolytes.

15.
ACS Appl Mater Interfaces ; 16(4): 5302-5307, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38156405

RESUMO

Atomically thin oxide semiconductors are emerging as potential materials for their potentiality in monolithic 3D integration and sensor applications. In this study, a charge transfer method employing viologen, an organic compound with exceptional reduction potential among n-type organics, is presented to modulate the carrier concentration in atomically thin In2O3 without the need of annealing. This study highlights the critical role of channel thickness on doping efficiency, revealing that viologen charge transfer doping is increasingly pronounced in thinner channels owing to their increased surface-to-volume ratio. Upon viologen doping, an electron sheet density of 6.8 × 1012 cm-2 is achieved in 2 nm In2O3 back gate device while preserving carrier mobility. Moreover, by the modification of the functional groups, viologens can be conveniently removed with acetone and an ultrasonic cleaner, making the viologen treatment a reversible process. Based on this doping scheme, we demonstrate an n-type metal oxide semiconductor inverter with viologen-doped In2O3, exhibiting a voltage gain of 26 at VD = 5 V. This complementary pairing of viologen and In2O3 offers ease of control over the carrier concentration, making it suitable for the next-generation electronic applications.

16.
Materials (Basel) ; 16(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005052

RESUMO

To solve the durability of flexible base asphalt pavement, especially its anti-rutting problem, a design method on durable asphalt pavement of flexible base on anti-rutting performance was put forward in the paper, based on many experiments and calculations. Firstly, a method that asphalt could be selected according to penetration and the anti-rutting factor of its base asphalt was found, which solved the problem of the asphalt selection of the flexible base asphalt mixture design. Meanwhile, a method of skeleton-density structure gradation design was proposed based on the fractal void ratio of coarse aggregate, fractal volume of fine aggregate in coarse aggregate, penetration, fractal dimension of gradation particle size, and rutting tests, which effectively solved in advance the rutting and fatigue performance of flexible base asphalt mixtures. Then, on the basis of the fatigue damage, a calculation method of fatigue life was suggested, which solved the problem that the fatigue damage of asphalt mixtures rarely considered the combined effects of creep damage and fatigue damage. In addition, a calculation method of rutting was formulated based on vehicle dynamic load and ANSYS 16.0 software. Lastly, the feasibility of the design method on durable asphalt pavement of flexible base on anti-rutting performance was verified combining with the real engineering of a supporting project and several numerical calculations and tests.

17.
Materials (Basel) ; 16(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37687527

RESUMO

The stiffnesses of embankments and culverts differ in the transition sections of high-speed railways (HSRs) due to their different supporting conditions. The dynamic irregularity caused by the different stiffnesses makes this transition area the weakest part of high-speed railways. Graded crushed stone combined with 5% cement is typically used to fill the subgrade in these transition areas. Thus, three different particle size ratios of crushed stone were matched and tested regarding the construction parameters to explore the most suitable materials to fill the roadbed in a transition section. Then, field dynamic tests were carried out on the culvert-embankment-culvert transition area where trains run at speeds of 5-360 km/h. A time-domain analysis of the test data was performed to obtain the laws of variation that cause the dynamic characteristics to change with the railway line and roadbed layer and the changes induced by a train's running speed, operating direction, and axle weight. The results indicate that (i) it is feasible to fill transition section roadbeds with well-graded crushed stone combined with 5% cement with optimal water contents; (ii) extreme dynamic responses in some special sections are observed, suggesting the value of taking special measures at the transition section. For example, the sections 14.5 m and 30 m from the 679 culvert and the bed layer should be specially stabilized; (iii) the train's axle load and driving direction show a great effect on corresponding sections and layers but present a small effect on the sections and layers nearby; and (iv) 260 km/h is a critical speed.

18.
Materials (Basel) ; 17(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38204017

RESUMO

The interface friction mechanics of reinforcement material with filler is an essential issue for the engineering design of reinforced soil structure. The interface friction mechanics is closely associated with the properties of filler and reinforcement material, which subsequently affects the overall stability. In order to investigate the interface mechanism of a double-twisted hexagonal gabion mesh with a coarse-grained filler derived from a weathered red sandstone, a large laboratory pullout test was carried out. The pullout force-displacement curve was obtained by fully mobilizing the gabion mesh to reach the peak shear stress at the interface between the gabion mesh and the coarse-grained filler. The change of force-displacement characteristics and the distribution of tensile stress in gabion mesh during the pullout process were obtained. A 3D numerical model was established based on the pullout test model, and the model for analyzing the interface characteristic between the gabion mesh and the coarse-grained filler was modeled using the FLAC3D 6.0 platform. The interface characteristics were further analyzed in terms of the displacement of soil, the displacement of reinforcement, and the shear stress of soil. The strength and deformation behaviors of the interface during the entire pullout process were well captured. The pullout force-displacement curve experiences a rapid growth stage, a development transition stage and a yielding stabilization stage. The critical displacement corresponding to peak pullout stress increases with the increase in normal stress. The normal stress determines the magnitude of shear stress at the reinforcement and soil interface, and the displacement distribution of a gabion mesh is not significantly affected by normal stress when the applied normal stress is within a range of 7-20 kPa. The findings are beneficial to engineering design and application of a gabion mesh-reinforced soil structure.

19.
ACS Appl Mater Interfaces ; 15(38): 45418-45425, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37677063

RESUMO

Exploring stimuli-responsive ion-conductive materials is a challenging task, but it has gained increasing attention because of their enormous potential applications in actuators, sensors, and smart electronics. Here, we demonstrate a distinctive photoresponsive ion-conductive device that utilizes azobenzene-based ionic liquids ([AzoCnMIM][Br], where n = 2, 6, and 10), confined in nanochannels of anodic aluminum oxide (AAO) templates for photoisomerization. The structure of [AzoCnMIM][Br] comprises photoresponsive and hydrophobic azobenzene moieties, hydrophilic imidazolium cations, and negatively charged bromide ions. Therefore, [AzoCnMIM][Br] can form micelles and exhibit photoresponsive ion conductivities. The nanochannels of AAO templates exhibit a confinement effect on the formation of azobenzene-based ionic liquid micelles due to the pore size, thereby preventing the formation of larger micelles that could lead to a decrease in conductivity. Consequently, the ion conductivities of the azobenzene-based ionic liquids are higher in the nanochannels of the AAO templates. The effects of the length of carbon chains on the azobezene-based ionic liquids and the pore size of the AAO templates have also been investigated. Additionally, through irradiation with UV/vis light, [AzoCnMIM][Br] can undergo reversible isomerization, thereby reversibly changing the sizes of the micelles and subsequently altering the ion conductivities.

20.
Materials (Basel) ; 15(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36143509

RESUMO

The objective of this research was to develop a solution for the deterioration effect on the high-temperature rutting performance and water stability of SMC. This research proposed a method for designing an SMC normal temperature modified asphalt mixture based on the existing findings, experimental research and the performance balance. First, the power function curve model of the aggregate gradation was put forward. The 0.075 mm, 4.75 mm and nominal maximum particle size were the key points of the aggregate gradation, and their passing rate was about 6%, 30%, and 95% respectively. Then, on the basis of the quadratic curve model, a method for determination of the optimum asphalt aggregate ratio of SMC normal temperature modified asphalt mixture was put forward, considering the skeleton-density structure. Last, rutting tests, small beam bending tests, freeze-thaw split tests, permeability coefficient tests, texture depth tests and pavement roughness tests were conducted, and the test results all met the performance requirements of the specifications for the construction of highway asphalt pavement in China perfectly, especially the high-temperature and water stability properties, which indicated that the design method for SMC normal temperature modified asphalt mixtures based on performance balance presented in this paper was reasonable and practical.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA