Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(26): e2309087, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38221690

RESUMO

The severe deterioration of the marine ecosystem significantly negatively impacts the performance of solar-driven steam generation (SSG) and the quality of the obtained freshwater. Herein, a bifunctional Ag/MgFe2O4@SCW reactor with a sandwich structure is designed for efficient SSG and Cr(VI) reduction, which is constructed via in situ deposit Ag nanoparticles (NPs) and MgFe2O4 onto surface carbonized wood (SCW). Owing to the advanced sandwich structure and strong interfacial interactions between each component, an ultra-high evaporation rate of 1.55 kg m-2 h-1 and the efficiency of 88.6% are achieved using Ag/MgFe2O4@SCW under 1 sun. The system exhibits the long-term evaporation performance in the simulated sewage and strong acid/base solutions along with water-harvesting capacity in outdoor solar desalination. The quality of distilled water after desalination of actual seawater and NaCl solutions with different concentrations meets the WHO-recommended drinkable water standards. Furthermore, Ag/MgFe2O4@SCW shows outstanding antibacterial property, self-desalting capacity, as well as reusability and structure stability. Most importantly, the fast carrier separation endows Ag/MgFe2O4@SCW with superior photocatalytic activity and Cr(VI) photoreduction of up to 96.1% after 180 min of illumination. The bifunctional Ag/MgFe2O4@SCW reactor provides an advanced synergistic mechanism for improving SSG and photocatalytic performance, while being promising for solar-powered production of clean water.

2.
Adv Mater ; 33(11): e2004711, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33511690

RESUMO

To achieve high ionic conductivity for solid electrolyte, an artificial Li-rich interface layer of about 60 nm thick has been constructed in polymer-based poly(ethylene oxide)-lithium bis(trifluoromethanesulfonyl)imide composite solid electrolyte (briefly noted as PEOm ) by adding Li-based alloys. As revealed by high-resolution transmission electron microscopy and electron energy loss spectroscopy, an artificial interface layer of amorphous feature is created around the Li-based alloy particles with the gradient distribution of Li across it. Electrochemical analysis and theoretical modeling demonstrate that the interface layer provides fast ion transport path and plays a key role in achieving high and stable ionic conductivity for PEOm -Li21 Si5 composite solid electrolyte. The PEOm -5%Li21 Si5 composite electrolyte exhibits an ionic conductivity of 3.9 × 10-5  S cm-1 at 30 °C and 5.6 × 10-4  S cm-1 at 45 °C. The LiFePO4 | PEOm -5%Li21 Si5 | Li all-solid-state batteries could maintain a stable capacity of 129.2 mA h g-1 at 0.2 C and 30 °C after 100 cycles, and 111.3 mA h g-1 after 200 cycles at 0.5 C and 45 °C, demonstrating excellent cycling stability and high-rate capability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA