Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nature ; 529(7586): 390-3, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26760203

RESUMO

How ecosystem productivity and species richness are interrelated is one of the most debated subjects in the history of ecology. Decades of intensive study have yet to discern the actual mechanisms behind observed global patterns. Here, by integrating the predictions from multiple theories into a single model and using data from 1,126 grassland plots spanning five continents, we detect the clear signals of numerous underlying mechanisms linking productivity and richness. We find that an integrative model has substantially higher explanatory power than traditional bivariate analyses. In addition, the specific results unveil several surprising findings that conflict with classical models. These include the isolation of a strong and consistent enhancement of productivity by richness, an effect in striking contrast with superficial data patterns. Also revealed is a consistent importance of competition across the full range of productivity values, in direct conflict with some (but not all) proposed models. The promotion of local richness by macroecological gradients in climatic favourability, generally seen as a competing hypothesis, is also found to be important in our analysis. The results demonstrate that an integrative modelling approach leads to a major advance in our ability to discern the underlying processes operating in ecological systems.


Assuntos
Biodiversidade , Pradaria , Modelos Biológicos , Plantas/classificação , Plantas/metabolismo , Comportamento Competitivo , Geografia
2.
Nature ; 537(7618): 93-96, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27556951

RESUMO

Niche dimensionality provides a general theoretical explanation for biodiversity-more niches, defined by more limiting factors, allow for more ways that species can coexist. Because plant species compete for the same set of limiting resources, theory predicts that addition of a limiting resource eliminates potential trade-offs, reducing the number of species that can coexist. Multiple nutrient limitation of plant production is common and therefore fertilization may reduce diversity by reducing the number or dimensionality of belowground limiting factors. At the same time, nutrient addition, by increasing biomass, should ultimately shift competition from belowground nutrients towards a one-dimensional competitive trade-off for light. Here we show that plant species diversity decreased when a greater number of limiting nutrients were added across 45 grassland sites from a multi-continent experimental network. The number of added nutrients predicted diversity loss, even after controlling for effects of plant biomass, and even where biomass production was not nutrient-limited. We found that elevated resource supply reduced niche dimensionality and diversity and increased both productivity and compositional turnover. Our results point to the importance of understanding dimensionality in ecological systems that are undergoing diversity loss in response to multiple global change factors.


Assuntos
Biodiversidade , Fertilizantes , Pradaria , Plantas/classificação , Plantas/metabolismo , Biomassa , Alimentos , Luz , Plantas/efeitos da radiação , Poaceae/classificação , Poaceae/efeitos dos fármacos , Poaceae/crescimento & desenvolvimento , Poaceae/efeitos da radiação
3.
J Biol Chem ; 295(33): 11742-11753, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32587094

RESUMO

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has challenged the speed at which laboratories can discover the viral composition and study health outcomes. The small ∼30-kb ssRNA genome of coronaviruses makes them adept at cross-species spread while enabling a robust understanding of all of the proteins the viral genome encodes. We have employed protein modeling, molecular dynamics simulations, evolutionary mapping, and 3D printing to gain a full proteome- and dynamicome-level understanding of SARS-CoV-2. We established the Viral Integrated Structural Evolution Dynamic Database (VIStEDD at RRID:SCR_018793) to facilitate future discoveries and educational use. Here, we highlight the use of VIStEDD for nsp6, nucleocapsid (N), and spike (S) surface glycoprotein. For both nsp6 and N, we found highly conserved surface amino acids that likely drive protein-protein interactions. In characterizing viral S protein, we developed a quantitative dynamics cross-correlation matrix to gain insights into its interactions with the angiotensin I-converting enzyme 2 (ACE2)-solute carrier family 6 member 19 (SLC6A19) dimer. Using this quantitative matrix, we elucidated 47 potential functional missense variants from genomic databases within ACE2/SLC6A19/transmembrane serine protease 2 (TMPRSS2), warranting genomic enrichment analyses in SARS-CoV-2 patients. These variants had ultralow frequency but existed in males hemizygous for ACE2. Two ACE2 noncoding variants (rs4646118 and rs143185769) present in ∼9% of individuals of African descent may regulate ACE2 expression and may be associated with increased susceptibility of African Americans to SARS-CoV-2. We propose that this SARS-CoV-2 database may aid research into the ongoing pandemic.


Assuntos
Betacoronavirus/química , Betacoronavirus/genética , Infecções por Coronavirus/metabolismo , Bases de Dados de Proteínas , Simulação de Dinâmica Molecular , Pneumonia Viral/metabolismo , Proteoma , Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Enzima de Conversão de Angiotensina 2 , População Negra/genética , COVID-19 , Infecções por Coronavirus/virologia , Proteínas do Nucleocapsídeo de Coronavírus , Predisposição Genética para Doença , Variação Genética , Interações Hospedeiro-Patógeno , Humanos , Masculino , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/metabolismo , Pandemias , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Fosfoproteínas , Pneumonia Viral/virologia , Mapas de Interação de Proteínas , Processamento de Proteína Pós-Traducional , SARS-CoV-2 , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/química , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
4.
Glob Chang Biol ; 26(8): 4572-4582, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32520438

RESUMO

Microbial processing of aggregate-unprotected organic matter inputs is key for soil fertility, long-term ecosystem carbon and nutrient sequestration and sustainable agriculture. We investigated the effects of adding multiple nutrients (nitrogen, phosphorus and potassium plus nine essential macro- and micro-nutrients) on decomposition and biochemical transformation of standard plant materials buried in 21 grasslands from four continents. Addition of multiple nutrients weakly but consistently increased decomposition and biochemical transformation of plant remains during the peak-season, concurrent with changes in microbial exoenzymatic activity. Higher mean annual precipitation and lower mean annual temperature were the main climatic drivers of higher decomposition rates, while biochemical transformation of plant remains was negatively related to temperature of the wettest quarter. Nutrients enhanced decomposition most at cool, high rainfall sites, indicating that in a warmer and drier future fertilized grassland soils will have an even more limited potential for microbial processing of plant remains.


Assuntos
Ecossistema , Pradaria , Carbono , Nitrogênio/análise , Nutrientes , Solo
5.
Nature ; 508(7497): 521-5, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24531763

RESUMO

Studies of experimental grassland communities have demonstrated that plant diversity can stabilize productivity through species asynchrony, in which decreases in the biomass of some species are compensated for by increases in others. However, it remains unknown whether these findings are relevant to natural ecosystems, especially those for which species diversity is threatened by anthropogenic global change. Here we analyse diversity-stability relationships from 41 grasslands on five continents and examine how these relationships are affected by chronic fertilization, one of the strongest drivers of species loss globally. Unmanipulated communities with more species had greater species asynchrony, resulting in more stable biomass production, generalizing a result from biodiversity experiments to real-world grasslands. However, fertilization weakened the positive effect of diversity on stability. Contrary to expectations, this was not due to species loss after eutrophication but rather to an increase in the temporal variation of productivity in combination with a decrease in species asynchrony in diverse communities. Our results demonstrate separate and synergistic effects of diversity and eutrophication on stability, emphasizing the need to understand how drivers of global change interactively affect the reliable provisioning of ecosystem services in real-world systems.


Assuntos
Biodiversidade , Eutrofização , Fertilizantes/efeitos adversos , Poaceae , Animais , Biomassa , Clima , Eutrofização/efeitos dos fármacos , Geografia , Cooperação Internacional , Poaceae/efeitos dos fármacos , Poaceae/fisiologia , Fatores de Tempo
6.
Nature ; 508(7497): 517-20, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24670649

RESUMO

Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.


Assuntos
Biodiversidade , Eutrofização/efeitos da radiação , Herbivoria/fisiologia , Luz , Plantas/metabolismo , Plantas/efeitos da radiação , Poaceae , Clima , Eutrofização/efeitos dos fármacos , Geografia , Atividades Humanas , Internacionalidade , Nitrogênio/metabolismo , Nitrogênio/farmacologia , Plantas/efeitos dos fármacos , Poaceae/efeitos dos fármacos , Poaceae/fisiologia , Poaceae/efeitos da radiação , Fatores de Tempo
7.
Ecol Lett ; 21(9): 1364-1371, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29952114

RESUMO

Environmental change can result in substantial shifts in community composition. The associated immigration and extinction events are likely constrained by the spatial distribution of species. Still, studies on environmental change typically quantify biotic responses at single spatial (time series within a single plot) or temporal (spatial beta diversity at single time points) scales, ignoring their potential interdependence. Here, we use data from a global network of grassland experiments to determine how turnover responses to two major forms of environmental change - fertilisation and herbivore loss - are affected by species pool size and spatial compositional heterogeneity. Fertilisation led to higher rates of local extinction, whereas turnover in herbivore exclusion plots was driven by species replacement. Overall, sites with more spatially heterogeneous composition showed significantly higher rates of annual turnover, independent of species pool size and treatment. Taking into account spatial biodiversity aspects will therefore improve our understanding of consequences of global and anthropogenic change on community dynamics.


Assuntos
Herbivoria , Plantas , Biodiversidade
8.
Ecology ; 99(4): 822-831, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29603733

RESUMO

Plant stoichiometry, the relative concentration of elements, is a key regulator of ecosystem functioning and is also being altered by human activities. In this paper we sought to understand the global drivers of plant stoichiometry and compare the relative contribution of climatic vs. anthropogenic effects. We addressed this goal by measuring plant elemental (C, N, P and K) responses to eutrophication and vertebrate herbivore exclusion at eighteen sites on six continents. Across sites, climate and atmospheric N deposition emerged as strong predictors of plot-level tissue nutrients, mediated by biomass and plant chemistry. Within sites, fertilization increased total plant nutrient pools, but results were contingent on soil fertility and the proportion of grass biomass relative to other functional types. Total plant nutrient pools diverged strongly in response to herbivore exclusion when fertilized; responses were largest in ungrazed plots at low rainfall, whereas herbivore grazing dampened the plant community nutrient responses to fertilization. Our study highlights (1) the importance of climate in determining plant nutrient concentrations mediated through effects on plant biomass, (2) that eutrophication affects grassland nutrient pools via both soil and atmospheric pathways and (3) that interactions among soils, herbivores and eutrophication drive plant nutrient responses at small scales, especially at water-limited sites.


Assuntos
Pradaria , Herbivoria , Animais , Biomassa , Ecossistema , Eutrofização , Humanos , Nitrogênio , Nutrientes
9.
Ecology ; 98(12): 3022-3033, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28940315

RESUMO

Increases in nutrient availability and alterations to mammalian herbivore communities are a hallmark of the Anthropocene, with consequences for the primary producer communities in many ecosystems. While progress has advanced understanding of plant community responses to these perturbations, the consequences for energy flow to higher trophic levels in the form of secondary production are less well understood. We quantified arthropod biomass after manipulating soil nutrient availability and wild mammalian herbivory, using identical methods across 13 temperate grasslands. Of experimental increases in nitrogen, phosphorus, and potassium, only treatments including nitrogen resulted in significantly increased arthropod biomass. Wild mammalian herbivore removal had a marginal, negative effect on arthropod biomass, with no interaction with nutrient availability. Path analysis including all sites implicated nutrient content of the primary producers as a driver of increased arthropod mean size, which we confirmed using 10 sites for which we had foliar nutrient data. Plant biomass and physical structure mediated the increase in arthropod abundance, while the nitrogen treatments accounted for additional variation not explained by our measured plant variables. The mean size of arthropod individuals was 2.5 times more influential on the plot-level total arthropod biomass than was the number of individuals. The eutrophication of grasslands through human activity, especially nitrogen deposition, thus may contribute to higher production of arthropod consumers through increases in nutrient availability across trophic levels.


Assuntos
Eutrofização , Pradaria , Herbivoria , Mamíferos/fisiologia , Animais , Artrópodes , Biomassa , Ecossistema , Humanos , Nitrogênio
10.
J Cosmet Sci ; 68(1): 114-125, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29465392

RESUMO

Structure/property comparisons were made of chemistries based on renewable 1,3-propanediol (PDO)- versus petroleum-based alkylene oxides as well as comparisons of the respective polyethers, emulsifiers, and cosmetic formulations based on these feedstocks. Green Chemistry Principles were applied in the manufacture of polyethylene glycol (PEG)-free renewable PDO-based oligomers and PDO-based fatty acid ester emulsifiers. Sustainable cosmetic products formulated with renewable PDO-based emulsifiers gave equivalent performance in sensory and moisturization evaluations compared to those formulated with the petroleum-derived PEG-based emulsifiers.


Assuntos
Alcenos/química , Alcenos/farmacologia , Petróleo/análise , Propilenoglicóis/química , Propilenoglicóis/farmacologia , Animais , Produtos Biológicos , Cosméticos/química , Cosméticos/farmacologia , Composição de Medicamentos , Emulsificantes/química , Emulsificantes/farmacologia , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Humanos , Relação Estrutura-Atividade
11.
Ecol Lett ; 18(1): 85-95, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25430889

RESUMO

Aboveground-belowground interactions exert critical controls on the composition and function of terrestrial ecosystems, yet the fundamental relationships between plant diversity and soil microbial diversity remain elusive. Theory predicts predominantly positive associations but tests within single sites have shown variable relationships, and associations between plant and microbial diversity across broad spatial scales remain largely unexplored. We compared the diversity of plant, bacterial, archaeal and fungal communities in one hundred and forty-five 1 m(2) plots across 25 temperate grassland sites from four continents. Across sites, the plant alpha diversity patterns were poorly related to those observed for any soil microbial group. However, plant beta diversity (compositional dissimilarity between sites) was significantly correlated with the beta diversity of bacterial and fungal communities, even after controlling for environmental factors. Thus, across a global range of temperate grasslands, plant diversity can predict patterns in the composition of soil microbial communities, but not patterns in alpha diversity.


Assuntos
Biodiversidade , Pradaria , Plantas , Microbiologia do Solo , Archaea/classificação , Bactérias/genética , Biota , Fungos/genética , Modelos Lineares
12.
Ecology ; 96(4): 998-1009, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26230020

RESUMO

Contemporary animal-plant interactions such as herbivory are widely understood to be shaped by evolutionary history. Yet questions remain about the role of plant phylogenetic diversity in generating and maintaining herbivore diversity, and whether evolutionary relatedness of producers might predict the composition of consumer communities. We tested for evidence of evolutionary associations among arthropods and the plants on which they were found, using phylogenetic analysis of naturally occurring arthropod assemblages sampled from a plant-diversity manipulation experiment. Considering phylogenetic relationships among more than 900 arthropod consumer taxa and 29 plant species in the experiment, we addressed several interrelated questions. First, our results support the hypothesis that arthropod functional traits such as body size and trophic role are phylogenetically conserved in community ecological samples. Second, herbivores tended to cooccur with closer phylogenetic relatives than would be expected at random, whereas predators and parasitoids did not show phylogenetic association patterns. Consumer specialization, as measured by association through time with monocultures of particular host plant species, showed significant phylogenetic signal, although the. strength of this association varied among plant species. Polycultures of phylogenetically dissimilar plant species supported more phylogenetically dissimilar consumer communities than did phylogenetically similar polycultures. Finally, we separated the effects of plant species richness and relatedness in predicting the phylogenetic distribution of the arthropod assemblages in this experiment. The phylogenetic diversity of plant communities predicted the phylogenetic diversity of herbivore communities even after accounting for plant species richness. The phylogenetic diversity of secondary consumers differed by guild, with predator phylogenetic diversity responding to herbivore relatedness, while parasitoid phylogenetic diversity was driven by plant relatedness. Evolutionary associations between plants and their consumers are apparent in plots only meters apart in a single field, indicating a strong role for host-plant phylogenetic diversity in sustaining landscape consumer biodiversity.


Assuntos
Artrópodes/genética , Tamanho Corporal/fisiologia , Cadeia Alimentar , Filogenia , Plantas/genética , Animais , Artrópodes/classificação , Artrópodes/fisiologia , Biodiversidade , Comportamento Alimentar , Plantas/classificação
13.
Ecol Lett ; 16(4): 513-21, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23347060

RESUMO

Plant growth can be limited by resource acquisition and defence against consumers, leading to contrasting trade-off possibilities. The competition-defence hypothesis posits a trade-off between competitive ability and defence against enemies (e.g. herbivores and pathogens). The growth-defence hypothesis suggests that strong competitors for nutrients are also defended against enemies, at a cost to growth rate. We tested these hypotheses using observations of 706 plant populations of over 500 species before and following identical fertilisation and fencing treatments at 39 grassland sites worldwide. Strong positive covariance in species responses to both treatments provided support for a growth-defence trade-off: populations that increased with the removal of nutrient limitation (poor competitors) also increased following removal of consumers. This result held globally across 4 years within plant life-history groups and within the majority of individual sites. Thus, a growth-defence trade-off appears to be the norm, and mechanisms maintaining grassland biodiversity may operate within this constraint.


Assuntos
Poaceae/fisiologia , Animais , Ecossistema , Fertilizantes , Herbivoria , Modelos Biológicos , Poaceae/crescimento & desenvolvimento , Dinâmica Populacional
14.
Glob Chang Biol ; 19(12): 3677-87, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24038796

RESUMO

Invasions have increased the size of regional species pools, but are typically assumed to reduce native diversity. However, global-scale tests of this assumption have been elusive because of the focus on exotic species richness, rather than relative abundance. This is problematic because low invader richness can indicate invasion resistance by the native community or, alternatively, dominance by a single exotic species. Here, we used a globally replicated study to quantify relationships between exotic richness and abundance in grass-dominated ecosystems in 13 countries on six continents, ranging from salt marshes to alpine tundra. We tested effects of human land use, native community diversity, herbivore pressure, and nutrient limitation on exotic plant dominance. Despite its widespread use, exotic richness was a poor proxy for exotic dominance at low exotic richness, because sites that contained few exotic species ranged from relatively pristine (low exotic richness and cover) to almost completely exotic-dominated ones (low exotic richness but high exotic cover). Both exotic cover and richness were predicted by native plant diversity (native grass richness) and land use (distance to cultivation). Although climate was important for predicting both exotic cover and richness, climatic factors predicting cover (precipitation variability) differed from those predicting richness (maximum temperature and mean temperature in the wettest quarter). Herbivory and nutrient limitation did not predict exotic richness or cover. Exotic dominance was greatest in areas with low native grass richness at the site- or regional-scale. Although this could reflect native grass displacement, a lack of biotic resistance is a more likely explanation, given that grasses comprise the most aggressive invaders. These findings underscore the need to move beyond richness as a surrogate for the extent of invasion, because this metric confounds monodominance with invasion resistance. Monitoring species' relative abundance will more rapidly advance our understanding of invasions.


Assuntos
Ecossistema , Espécies Introduzidas , Dispersão Vegetal , Poaceae/fisiologia , Biodiversidade
15.
BMJ Case Rep ; 14(6)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155024

RESUMO

A 40-year-old man developed granulomatosis with polyangiitis (GPA) following a mild case of COVID-19. Initially, he experienced mild migrating joint pain for 2 months prior to testing positive for SARS-CoV-2 but dramatically worsened following resolution of his infection. The pain continued to progress until he suddenly develope haemoptysis, prompting him to present to a local hospital. The diagnosis of diffuse alveolar haemorrhage secondary to GPA was confirmed with labs, imaging and histopathology. Precipitous deterioration of GPA with concurrent COVID-19 infection indicates a possible temporal relationship. Since the onset of the pandemic, SARS-CoV-2 has been anecdotally associated with the development of various connective tissue disorders. The overlapping clinical presentations and similar appearance on lung imaging present clinicians with a diagnostic challenge. This underscores the importance of having a high index of suspicion of autoimmune diagnoses in patients who present with new or worsening findings following a COVID-19 infection.


Assuntos
COVID-19 , Granulomatose com Poliangiite , Pneumopatias , Adulto , Granulomatose com Poliangiite/complicações , Granulomatose com Poliangiite/diagnóstico , Hemorragia/etiologia , Humanos , Pneumopatias/diagnóstico por imagem , Pneumopatias/etiologia , Masculino , SARS-CoV-2
16.
Ecology ; 91(11): 3274-83, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21141188

RESUMO

Species in a given trophic level occur in vastly unequal abundance, a pattern commonly documented but poorly explained for most taxa. Theoretical predictions of species density such as those arising from the metabolic theory of ecology hold well at large spatial and temporal scales but are not supported in many communities sampled at a relatively small scale. At these scales ecological factors may be more important than the inherent limits to energy use set by allometric scaling of mass. These factors include the amount of resources available, and the ability of individuals to convert these resources successfully into population growth. While previous studies have demonstrated the limits of macroecological theory in explaining local abundance, few studies have tested alternative generalized mechanisms determining abundance at the community scale. Using an assemblage of forest moth species found co-occurring as caterpillars on a single host plant species, we tested whether species abundance on that plant could be explained by mass allometry, intrinsic population growth, diet breadth, or some combination of these traits. We parameterized life history traits of the caterpillars in association with the host plant in both field and laboratory settings, so that the population growth estimate was specific to the plant on which abundance was measured. Using a generalized least-squares regression method incorporating phylogenetic relatedness, we found no relationship between abundance and mass but found that abundance was best explained by both intrinsic population growth rate and diet breadth. Species population growth potential was most affected by survivorship and larval development time on the host plant. Metabolic constraints may determine upper limits to local abundance levels for species, but local community abundance is strongly predicted by the potential for population increase and the resources available to that species in the environment.


Assuntos
Lepidópteros/fisiologia , Densidade Demográfica , Árvores , Animais , Comportamento Alimentar , Larva/fisiologia , Lepidópteros/genética , Filogenia
17.
bioRxiv ; 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32511397

RESUMO

The SARS-CoV-2 pandemic, starting in 2019, has challenged the speed at which labs perform science, ranging from discoveries of the viral composition to handling health outcomes in humans. The small ~30kb single-stranded RNA genome of Coronaviruses makes them adept at cross species spread and drift, increasing their probability to cause pandemics. However, this small genome also allows for a robust understanding of all proteins coded by the virus. We employed protein modeling, molecular dynamic simulations, evolutionary mapping, and 3D printing to gain a full proteome and dynamicome understanding of SARS-CoV-2. The Viral Integrated Structural Evolution Dynamic Database (VIStEDD) has been established (prokoplab.com/vistedd), opening future discoveries and educational usage. In this paper, we highlight VIStEDD usage for nsp6, Nucleocapsid (N), and Spike (S) surface glycoprotein. For both nsp6 and N we reveal highly conserved surface amino acids that likely drive protein-protein interactions. In characterizing viral S protein, we have developed a quantitative dynamics cross correlation matrix insight into interaction with the ACE2/SLC6A19 dimer complex. From this quantitative matrix, we elucidated 47 potential functional missense variants from population genomic databases within ACE2/SLC6A19/TMPRSS2, warranting genomic enrichment analyses in SARS-CoV-2 patients. Moreover, these variants have ultralow frequency, but can exist as hemizygous in males for ACE2, which falls on the X-chromosome. Two noncoding variants (rs4646118 and rs143185769) found in ~9% of African descent individuals for ACE2 may regulate expression and be related to increased susceptibility of African Americans to SARS-CoV-2. This powerful database of SARS-CoV-2 can aid in research progress in the ongoing pandemic.

18.
Nat Ecol Evol ; 2(1): 50-56, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29203922

RESUMO

Biodiversity is declining in many local communities while also becoming increasingly homogenized across space. Experiments show that local plant species loss reduces ecosystem functioning and services, but the role of spatial homogenization of community composition and the potential interaction between diversity at different scales in maintaining ecosystem functioning remains unclear, especially when many functions are considered (ecosystem multifunctionality). We present an analysis of eight ecosystem functions measured in 65 grasslands worldwide. We find that more diverse grasslands-those with both species-rich local communities (α-diversity) and large compositional differences among localities (ß-diversity)-had higher levels of multifunctionality. Moreover, α- and ß-diversity synergistically affected multifunctionality, with higher levels of diversity at one scale amplifying the contribution to ecological functions at the other scale. The identity of species influencing ecosystem functioning differed among functions and across local communities, explaining why more diverse grasslands maintained greater functionality when more functions and localities were considered. These results were robust to variation in environmental drivers. Our findings reveal that plant diversity, at both local and landscape scales, contributes to the maintenance of multiple ecosystem services provided by grasslands. Preserving ecosystem functioning therefore requires conservation of biodiversity both within and among ecological communities.


Assuntos
Biodiversidade , Pradaria , Plantas , Modelos Biológicos , Análise Espacial
19.
PLoS One ; 12(5): e0178440, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28552986

RESUMO

The distribution of flowering across the growing season is governed by each species' evolutionary history and climatic variability. However, global change factors, such as eutrophication and invasion, can alter plant community composition and thus change the distribution of flowering across the growing season. We examined three ecoregions (tall-, mixed, and short-grass prairie) across the U.S. Central Plains to determine how nutrient (nitrogen (N), phosphorus, and potassium (+micronutrient)) addition alters the temporal patterns of plant flowering traits. We calculated total community flowering potential (FP) by distributing peak-season plant cover values across the growing season, allocating each species' cover to only those months in which it typically flowers. We also generated separate FP profiles for exotic and native species and functional group. We compared the ability of the added nutrients to shift the distribution of these FP profiles (total and sub-groups) across the growing season. In all ecoregions, N increased the relative cover of both exotic species and C3 graminoids that flower in May through August. The cover of C4 graminoids decreased with added N, but the response varied by ecoregion and month. However, these functional changes only aggregated to shift the entire community's FP profile in the tall-grass prairie, where the relative cover of plants expected to flower in May and June increased and those that flower in September and October decreased with added N. The relatively low native cover in May and June may leave this ecoregion vulnerable to disturbance-induced invasion by exotic species that occupy this temporal niche. There was no change in the FP profile of the mixed and short-grass prairies with N addition as increased abundance of exotic species and C3 graminoids replaced other species that flower at the same time. In these communities a disturbance other than nutrient addition may be required to disrupt phenological patterns.


Assuntos
Ecossistema , Flores , Nitrogênio , Fósforo , Fenômenos Fisiológicos Vegetais , Potássio , Meio-Oeste dos Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA