RESUMO
The alarming rise of multidrug-resistant Gram-positive bacteria has precipitated a healthcare crisis, necessitating the development of new antimicrobial therapies. Here we describe a new class of antibiotics based on a ring-fused 2-pyridone backbone, which are active against vancomycin-resistant enterococci (VRE), a serious threat as classified by the Centers for Disease Control and Prevention, and other multidrug-resistant Gram-positive bacteria. Ring-fused 2-pyridone antibiotics have bacteriostatic activity against actively dividing exponential phase enterococcal cells and bactericidal activity against nondividing stationary phase enterococcal cells. The molecular mechanism of drug-induced killing of stationary phase cells mimics aspects of fratricide observed in enterococcal biofilms, where both are mediated by the Atn autolysin and the GelE protease. In addition, combinations of sublethal concentrations of ring-fused 2-pyridones and standard-of-care antibiotics, such as vancomycin, were found to synergize to kill clinical strains of VRE. Furthermore, a broad range of antibiotic resistant Gram-positive pathogens, including those responsible for the increasing incidence of antibiotic resistant healthcare-associated infections, are susceptible to this new class of 2-pyridone antibiotics. Given the broad antibacterial activities of ring-fused 2-pyridone compounds against Gram-positive (GmP) bacteria we term these compounds GmPcides, which hold promise in combating the rising tide of antibiotic resistant Gram-positive pathogens.
Assuntos
Bactérias Gram-Positivas , Piridonas , Enterococos Resistentes à Vancomicina , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , N-Acetil-Muramil-L-Alanina Amidase/farmacologia , Piridonas/farmacologia , Vancomicina/farmacologia , Enterococos Resistentes à Vancomicina/efeitos dos fármacosRESUMO
Emerging antibiotic resistance demands identification of novel antibacterial compound classes. A bacterial whole-cell screen based on pneumococcal autolysin-mediated lysis induction was developed to identify potential bacterial cell wall synthesis inhibitors. A hit class comprising a 1-amino substituted tetrahydrocarbazole (THCz) scaffold, containing two essential amine groups, displayed bactericidal activity against a broad range of gram-positive and selected gram-negative pathogens in the low micromolar range. Mode of action studies revealed that THCz inhibit cell envelope synthesis by targeting undecaprenyl pyrophosphate-containing lipid intermediates and thus simultaneously inhibit peptidoglycan, teichoic acid, and polysaccharide capsule biosynthesis. Resistance did not readily develop in vitro, and the ease of synthesizing and modifying these small molecules, as compared to natural lipid II-binding antibiotics, makes THCz promising scaffolds for development of cell wall-targeting antimicrobials.
Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Parede Celular/química , Parede Celular/efeitos dos fármacos , Lipídeos/química , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Testes de Sensibilidade Microbiana , N-Acetil-Muramil-L-Alanina Amidase , Peptidoglicano/biossíntese , Fosfatos de Poli-Isoprenil , Streptococcus pneumoniae/efeitos dos fármacos , Ácidos Teicoicos/química , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivadosRESUMO
Mycobacterium tuberculosis (Mtb) killed more people in 2017 than any other single infectious agent. This dangerous pathogen is able to withstand stresses imposed by the immune system and tolerate exposure to antibiotics, resulting in persistent infection. The global tuberculosis (TB) epidemic has been exacerbated by the emergence of mutant strains of Mtb that are resistant to frontline antibiotics. Thus, both phenotypic drug tolerance and genetic drug resistance are major obstacles to successful TB therapy. Using a chemical approach to identify compounds that block stress and drug tolerance, as opposed to traditional screens for compounds that kill Mtb, we identified a small molecule, C10, that blocks tolerance to oxidative stress, acid stress, and the frontline antibiotic isoniazid (INH). In addition, we found that C10 prevents the selection for INH-resistant mutants and restores INH sensitivity in otherwise INH-resistant Mtb strains harboring mutations in the katG gene, which encodes the enzyme that converts the prodrug INH to its active form. Through mechanistic studies, we discovered that C10 inhibits Mtb respiration, revealing a link between respiration homeostasis and INH sensitivity. Therefore, by using C10 to dissect Mtb persistence, we discovered that INH resistance is not absolute and can be reversed.
Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Isoniazida , Mycobacterium tuberculosis/efeitos dos fármacos , Avaliação Pré-Clínica de MedicamentosRESUMO
A BF3·OEt2 catalyzed intramolecular Povarov reaction was used to synthesize 15 chromenopyridine fused thiazolino-2-pyridone peptidomimetics. The reaction works with several O-alkylated salicylaldehydes and amino functionalized thiazolino-2-pyridones, to generate polyheterocycles with diverse substitution. The synthesized compounds were screened for their ability to bind α-synuclein and amyloid ß fibrils in vitro. Analogues substituted with a nitro group bind to mature amyloid fibrils, and the activity moreover depends on the positioning of this functional group.
Assuntos
Amiloide , alfa-Sinucleína , Peptídeos beta-Amiloides , PiridonasRESUMO
The Internet of Things (IoT) connects smart devices to enable various intelligent services. The deployment of IoT encounters several challenges, such as difficulties in controlling and managing IoT applications and networks, problems in programming existing IoT devices, long service provisioning time, underused resources, as well as complexity, isolation and scalability, among others. One fundamental concern is that current IoT networks lack flexibility and intelligence. A network-wide flexible control and management are missing in IoT networks. In addition, huge numbers of devices and large amounts of data are involved in IoT, but none of them have been tuned for supporting network management and control. In this paper, we argue that Software-defined Networking (SDN) together with the data generated by IoT applications can enhance the control and management of IoT in terms of flexibility and intelligence. We present a review for the evolution of SDN and IoT and analyze the benefits and challenges brought by the integration of SDN and IoT with the help of IoT data. We discuss the perspectives of knowledge-driven SDN for IoT through a new IoT architecture and illustrate how to realize Industry IoT by using the architecture. We also highlight the challenges and future research works toward realizing IoT with the knowledge-driven SDN.
RESUMO
Antibacterial compounds with novel modes of action are needed for management of bacterial infections. Here we describe a high-content screen of 9,800 compounds identifying acylated sulfonamides as novel growth inhibitors of the sexually transmitted pathogen Chlamydia trachomatis. The effect was bactericidal and distinct from that of sulfonamide antibiotics, as para-aminobenzoic acid did not reduce efficacy. Chemical inhibitors play an important role in Chlamydia research as probes of potential targets and as drug development starting points.
Assuntos
Antibacterianos/farmacologia , Chlamydia trachomatis/efeitos dos fármacos , Sulfametoxazol/farmacologia , Sulfisoxazol/farmacologia , Avaliação Pré-Clínica de MedicamentosRESUMO
Time-dependent inhibition (TDI) of the cytochrome P450 (P450) family of enzymes is usually studied in human liver microsomes (HLM) by investigating whether the inhibitory potency is increased with increased incubation times. The presented work was initiated after a discrepancy was observed for the TDI of an important P450 enzyme, CYP3A4, during early studies of the investigational drug compound AZD3839 [(S)-1-(2-(difluoromethyl)pyridin-4-yl)-4-fluoro-1-(3-(pyrimidin-5-yl)phenyl)-1H-isoindol-3-amine hemifumarate]; TDI was detected using a regulatory method but not with an early screening method. We show here that the different solvents present in the respective studies, dimethyl sulfoxide (DMSO, screening method) versus methanol or water (regulatory method), were responsible for the different TDI results. We further demonstrate why DMSO, present at the levels of 0.2% and 0.5% in the incubations, masked the TDI effect. In addition to the TDI experiments performed in HLM, TDI studies with AZD3839 were performed in pooled human hepatocytes (Hhep) from different suppliers, using DMSO, methanol, or water. The results from these experiments show no TDI or attenuated TDI effect, depending on the supplier. Metabolite identification of the compound dissolved in DMSO, methanol, or water shows different profiles after incubations with the different systems (HLM or Hhep), which may explain the differences in the TDI outcomes. Thorough investigations of the biotransformation of AZD3839 have been performed to find the reactive pathway causing the TDI of CYP3A4, and are presented here. Our findings show that the in vitro risk profile for drug-drug interactions potential of AZD3839 is very much dependent on the chosen test system and the experimental conditions used.
Assuntos
Inibidores do Citocromo P-450 CYP3A , Inibidores Enzimáticos/farmacocinética , Hepatócitos/efeitos dos fármacos , Indóis/farmacocinética , Microssomos Hepáticos/efeitos dos fármacos , Pirimidinas/farmacocinética , Solventes/farmacologia , Biotransformação , Células Cultivadas , Citocromo P-450 CYP3A , Inibidores Enzimáticos/farmacologia , Meia-Vida , Hepatócitos/enzimologia , Humanos , Indóis/farmacologia , Microssomos Hepáticos/enzimologia , Pirimidinas/farmacologiaRESUMO
Recently, the discovery of the aminoisoindoles as potent and selective inhibitors of ß-secretase was reported, including the close structural analogs compound (S)-1-pyridin-4-yl-4-fluoro-1-(3-(pyrimidin-5-yl)phenyl)-1H-isoindol-3-amine [(S)-25] and (S)-1-(2-(difluoromethyl)pyridin-4-yl)-4-fluoro-1-(3-(pyrimidin-5-yl)phenyl)-1H-isoindol-3-amine hemifumarate (AZD3839), the latter being recently progressed to the clinic. The biotransformation of (S)-25 was investigated in vitro and in vivo in rat, rabbit, and human and compared with AZD3839 to further understand the metabolic fate of these compounds. In vitro, CYP3A4 was the major responsible enzyme and metabolized both compounds to a large extent in the commonly shared pyridine and pyrimidine rings. The main proposed metabolic pathways in various in vitro systems were N-oxidation of the pyridine and/or pyrimidine ring and conversion to 4-pyrimidone and pyrimidine-2,4-dione. Both compounds were extensively metabolized, and more than 90% was excreted in feces after intravenous administration of radiolabeled compound to the rat. Here, the main pathways were N-oxidation of the pyridine and/or pyrimidine ring and a ring contraction of the pyrimidine ring into an imidazole ring. Ring-contracted metabolites accounted for 25% of the total metabolism in the rat for (S)-25, whereas the contribution was much smaller for AZD3839. This metabolic pathway was not foreseen on the basis of the obtained in vitro data. In conclusion, we discovered an unusual metabolic pathway of aryl-pyrimidine-containing compounds by a ring-opening reaction followed by elimination of a carbon atom and a ring closure to form an imidazole ring.
Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Pirimidinas/química , Animais , Biotransformação , Cromatografia Líquida , Ciclização , Inibidores Enzimáticos/química , Humanos , Indóis/farmacocinética , Masculino , Espectrometria de Massas , Pirimidinas/farmacocinética , Coelhos , Ratos , Ratos Sprague-DawleyRESUMO
In vitro metabolic profiling and in vitro genotoxicity assessment are important aspects of the drug discovery program as they eliminate harmful compounds from further development. In standard in vitro genotoxicity testing, induced rat liver S9 is used as an exogenous bio-activation system for detecting promutagens. In this study we show that rat liver S9 is an insufficient system regarding the conversion of TRPV1 antagonists of the benzothiazole amide series into relevant in vivo metabolites. Human and rat hepatocyte experiments demonstrated generation of an aryl amine metabolite that was subsequently N-acetylated. The hydrolyzed metabolites as well as the parent compound were also metabolized into glutathione (GSH) conjugates. Rat liver S9 exhibited a very low amide hydrolysis capacity and no formation of GSH conjugates when supplemented with NADPH and GSH. The discrepancy in metabolic capability between hepatocytes and rat liver S9 led to confounding results in in vitro genotoxicity assessment for this chemical class as judged by the results of Ames test, mouse lymphoma assay, SOS/umu test and Comet assay in rat hepatocytes. This study highlights the pivotal role that understanding the mechanism of metabolite formation has in interpreting as well as designing reliable and relevant in vitro genotoxicity experiments.
Assuntos
Benzotiazóis/metabolismo , Ensaio Cometa , Canais de Cátion TRPV/antagonistas & inibidores , Animais , Feminino , Glutationa/metabolismo , Hepatócitos/metabolismo , Humanos , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Ratos WistarRESUMO
Increasing complexity and data-generation rates in cyber-physical systems and the industrial Internet of things are calling for a corresponding increase in AI capabilities at the resource-constrained edges of the Internet. Meanwhile, the resource requirements of digital computing and deep learning are growing exponentially, in an unsustainable manner. One possible way to bridge this gap is the adoption of resource-efficient brain-inspired "neuromorphic" processing and sensing devices, which use event-driven, asynchronous, dynamic neurosynaptic elements with colocated memory for distributed processing and machine learning. However, since neuromorphic systems are fundamentally different from conventional von Neumann computers and clock-driven sensor systems, several challenges are posed to large-scale adoption and integration of neuromorphic devices into the existing distributed digital-computational infrastructure. Here, we describe the current landscape of neuromorphic computing, focusing on characteristics that pose integration challenges. Based on this analysis, we propose a microservice-based conceptual framework for neuromorphic systems integration, consisting of a neuromorphic-system proxy, which would provide virtualization and communication capabilities required in distributed systems of systems, in combination with a declarative programming approach offering engineering-process abstraction. We also present concepts that could serve as a basis for the realization of this framework, and identify directions for further research required to enable large-scale system integration of neuromorphic devices.
RESUMO
Streptococcus pneumoniae, a major cause of pneumonia, sepsis, and meningitis worldwide, has the nasopharynges of small children as its main ecological niche. Depletion of pneumococci from this niche would reduce the disease burden and could be achieved using small molecules with narrow-spectrum antibacterial activity. We identified the alkylated dicyclohexyl carboxylic acid 2CCA-1 as a potent inducer of autolysin-mediated lysis of S. pneumoniae, while having low activity against Staphylococcus aureus 2CCA-1-resistant strains were found to have inactivating mutations in fakB3, known to be required for uptake of host polyunsaturated fatty acids, as well as through inactivation of the transcriptional regulator gene fabT, vital for endogenous, de novo fatty acid synthesis regulation. Structure activity relationship exploration revealed that, besides the central dicyclohexyl group, the fatty acid-like structural features of 2CCA-1 were essential for its activity. The lysis-inducing activity of 2CCA-1 was considerably more potent than that of free fatty acids and required growing bacteria, suggesting that 2CCA-1 needs to be metabolized to exert its antimicrobial activity. Total lipid analysis of 2CCA-1 treated bacteria identified unique masses that were modeled to 2CCA-1 containing lysophosphatidic and phosphatidic acid in wild-type but not in fakB3 mutant bacteria. This suggests that 2CCA-1 is metabolized as a fatty acid via FakB3 and utilized as a phospholipid building block, leading to accumulation of toxic phospholipid species. Analysis of FabT-mediated fakB3 expression elucidates how the pneumococcus could ensure membrane homeostasis and concurrent economic use of host-derived fatty acids.IMPORTANCE Fatty acid biosynthesis is an attractive antibiotic target, as it affects the supply of membrane phospholipid building blocks. In Streptococcus pneumoniae, it is not sufficient to target only the endogenous fatty acid synthesis machinery, as uptake of host fatty acids may bypass this inhibition. Here, we describe a small-molecule compound, 2CCA-1, with potent bactericidal activity that upon interactions with the fatty acid binding protein FakB3, which is present in a limited number of Gram-positive species, becomes metabolized and incorporated as a toxic phospholipid species. Resistance to 2CCA-1 developed specifically in fakB3 and the regulatory gene fabT These mutants reveal a regulatory connection between the extracellular polyunsaturated fatty acid metabolism and endogenous fatty acid synthesis in S. pneumoniae, which could ensure balance between efficient scavenging of host polyunsaturated fatty acids and membrane homeostasis. The data might be useful in the identification of narrow-spectrum treatment strategies to selectively target members of the Lactobacillales such as S. pneumoniae.
Assuntos
Antibacterianos/farmacologia , Ácidos Carboxílicos/farmacologia , Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos/farmacologia , Streptococcus pneumoniae/efeitos dos fármacos , Antibacterianos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriólise/efeitos dos fármacos , Vias Biossintéticas/efeitos dos fármacos , Ácidos Carboxílicos/química , Farmacorresistência Bacteriana , Ácidos Graxos/química , Regulação Bacteriana da Expressão Gênica , Mutação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Streptococcus pneumoniae/citologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismoRESUMO
OBJECTIVE: Patients with inflammatory bowel disease (IBD) often have low iron stores or anaemia. There is controversy about whether iron should be supplemented orally or intravenously (i.v.). The purpose of this study was to investigate whether treatment with intravenous iron is superior to treatment with oral iron. The primary end-points were response and remaining anaemia at the end of treatment (EOT). MATERIAL AND METHODS: Ninety-one patients with IBD and anaemia (B-Hb <115 g/L) were randomized to oral iron sulphate (n=46) or intravenous iron sucrose (n=45) treatment for 20 weeks. RESULTS: Forty-three patients in the intravenous iron group completed the study compared to 35 patients in the oral iron group (p=0.0009). Only 22 patients (48%) tolerated the prescribed oral dose, and 52% reduced the dose or withdrew from treatment because of poor tolerance. At EOT, 47% patients in the oral iron group increased their B-Hb by > or =20 g/L, compared with 66% in the intravenous iron group (p=0.07). In the oral iron group, 41% still had anaemia versus 16% of the patients in the intravenous iron group (p=0.007), and 22% versus 42% reached their reference B-Hb level (p=0.04). Treatment with intravenous iron sucrose improved iron stores faster and more effectively than oral iron (p=0.002). Under treatment with intravenous iron, 74% of the patients had no anaemia and normal S-ferritin levels (>25 microg/L) at EOT compared with 48% of patients receiving oral iron (p=0.013). CONCLUSIONS: Treatment with intravenous iron sucrose is effective, safe, well tolerated and superior to oral iron in correcting haemoglobin and iron stores in patients with IBD.
Assuntos
Anemia/tratamento farmacológico , Anemia/etiologia , Compostos Férricos/uso terapêutico , Compostos Ferrosos/uso terapêutico , Hematínicos/uso terapêutico , Doenças Inflamatórias Intestinais/complicações , Administração Oral , Adulto , Feminino , Compostos Férricos/administração & dosagem , Óxido de Ferro Sacarado , Compostos Ferrosos/administração & dosagem , Ácido Glucárico , Hematínicos/administração & dosagem , Humanos , Injeções Intravenosas , Masculino , Suécia , Resultado do TratamentoRESUMO
Store and forward Voice-over-IP is a suggested solution for supporting Telemedicine at rural health clinics in developing countries. Solutions described to date are designed to support communication by establishing point-to-point connectivity between two sites. In this paper we present an approach for creating scalable Telemedicine networks based on Delay Tolerant Networking. This holds potential for allowing Telemedicine networks to be created that can enable sharing of Teleconsultation and other medical information among a large number of locations in areas that cannot be served by existing solutions.
Assuntos
Comunicação , População Rural , Interface para o Reconhecimento da Fala , Telemedicina/métodos , Países em DesenvolvimentoRESUMO
Chlamydia trachomatis infections are a global health problem and new approaches to treat C. trachomatis with drugs of high specificity would be valuable. A library of substituted ring fused 2-pyridones has been synthesized and evaluated for their ability to attenuate C. trachomatis infectivity. In vivo pharmacokinetic studies were performed, with the best candidates demonstrating that a C8-methylsulfonamide substituent improved pharmacokinetic properties important for oral administration. C8-Methyl sulfonamide analogue 30 inhibited C. trachomatis infectivity in low micromolar concentrations. Further pharmacokinetic evaluation at an oral dose of 10 mg kg-1 showed an apparent bioavailability of 41%, compared to C8-cyclopropyl and -methoxy analogues which had negligible oral uptake. In vitro ADME (absorption, distribution, metabolism and excretion) testing of solubility and Caco-2 cell permeability revealed that both solubility and permeability is greatly improved with the C8-methyl sulfonamide 30, effectively moving it from BCS (Biopharmaceutical Classification System) class IV to II.
RESUMO
BACKGROUND: The cause and pathophysiology of ulcerative colitis are both mainly unknown. We have previously used whole-genome microarray technique on biopsies obtained from patients with ulcerative colitis to identify 5 changed mucosal transcripts. The aim of this study was to compare mucosal expressions of these five transcripts in ulcerative colitis patients vs. controls, along with the transcript expression in relation to the clinical ulcerative colitis status. METHODS: Colonic mucosal specimens from rectum and caecum were taken at ambulatory colonoscopy from ulcerative colitis patients (n = 49) with defined inflammatory activity and disease extension, and from controls (n = 67) without inflammatory bowel disease. The five mucosal transcripts aldolase B, elafin, MST-1, simNIPhom and SLC6A14 were analyzed using quantitative real-time PCR. RESULTS: Significant transcript differences in the rectal mucosa for all five transcripts were demonstrated in ulcerative colitis patients compared to controls. The grade of transcript expression was related to the clinical disease activity. CONCLUSION: The five gene transcripts were changed in patients with ulcerative colitis, and were related to the disease activity. The known biological function of some of the transcripts may contribute to the inflammatory features and indicate a possible role of microbes in ulcerative colitis. The findings may also contribute to our pathophysiological understanding of ulcerative colitis.
Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Colite Ulcerativa/metabolismo , Elafina/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Sistemas de Transporte de Aminoácidos , Sistemas de Transporte de Aminoácidos Neutros/genética , Biópsia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Estudos de Casos e Controles , Ceco/metabolismo , Ceco/patologia , Colite Ulcerativa/patologia , Elafina/genética , Feminino , Frutose-Bifosfato Aldolase/genética , Fator de Crescimento de Hepatócito/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mucosa/metabolismo , Mucosa/patologia , Reação em Cadeia da Polimerase , Estudos Prospectivos , Proteínas Proto-Oncogênicas/genética , Reto/metabolismo , Reto/patologia , Transcrição GênicaRESUMO
Macrodomains recognize intracellular adenosine diphosphate (ADP)-ribosylation resulting in either removal of the modification or a protein interaction event. Research into compounds that modulate macrodomain functions could make important contributions. We investigated the interactions of all seven individual macrodomains of the human poly(ADP-ribose) polymerase (PARP) family members PARP9, PARP14, and PARP15 with five mono-ADP-ribosylated (automodified) ADP-ribosyltransferase domains using an AlphaScreen assay. Several mono-ADP-ribosylation-dependent interactions were identified, and they were found to be in the micromolar affinity range using surface plasmon resonance (SPR). We then focused on the interaction between PARP14 macrodomain-2 and the mono-ADP-ribosylated PARP10 catalytic domain, and probed a ~1500-compound diverse library for inhibitors of this interaction using AlphaScreen. Initial hit compounds were verified by concentration-response experiments using AlphaScreen and SPR, and they were tested against PARP14 macrodomain-2 and -3. Two initial hit compounds and one chemical analog each were further characterized using SPR and microscale thermophoresis. In conclusion, our results reveal novel macrodomain interactions and establish protocols for identification of inhibitors of such interactions.
Assuntos
Bioensaio/métodos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , ADP Ribose Transferases/metabolismo , ADP-Ribosilação/efeitos dos fármacos , Adenosina Difosfato Ribose/metabolismo , Humanos , PentosiltransferasesRESUMO
BACKGROUND: The disposition of a drug is dependent on interactions between the body and the drug, its molecular properties and the physical and biological barriers presented in the body. In order for a drug to have a desired pharmacological effect it has to have the right properties to be able to reach the target site in sufficient concentration. This review details how drug metabolism and pharmacokinetics (DMPK) and physicochemical deliveries played an important role in data interpretation and compound optimization at AstraZeneca R&D in Södertälje, Sweden. METHODS: A selection of assays central in the evaluation of the DMPK properties of new chemical entities is presented, with guidance and consideration on assay outcome interpretation. Early in projects, solubility, LogD, permeability and metabolic stability were measured to support effective optimization of DMPK properties. Changes made to facilitate high throughput, efficient bioanalysis and the handling of large amounts of samples are described. Already early in drug discovery, we used an integrated approach for the prediction of the fate of drugs in human (early dose to man) based on data obtained from in vitro experiments. The early dose to man was refined with project progression, which triggered more intricate assays and experiments. At later stages, preclinical in vivo pharmacokinetic (PK) data was integrated with pharmacodynamics (PD) to allow predictions of required dose, dose intervals and exposure profile to achieve the desired effect in man. RESULTS AND CONCLUSIONS: A well-defined work flow of DMPK activities from early lead identification up to the selection of a candidate drug was developed. This resulted in a cost effective and efficient optimization of chemical series, and facilitated informed decision making throughout project progress.
Assuntos
Descoberta de Drogas , Preparações Farmacêuticas/metabolismo , Farmacocinética , Animais , Proteínas Sanguíneas/metabolismo , Indústria Farmacêutica , Interações Medicamentosas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Glutationa/metabolismo , Humanos , Permeabilidade , Preparações Farmacêuticas/química , Ligação ProteicaRESUMO
Protein ADP-ribosylation is a post-translational modification involved in DNA repair, protein degradation, transcription regulation, and epigenetic events. Intracellular ADP-ribosylation is catalyzed predominantly by ADP-ribosyltransferases with diphtheria toxin homology (ARTDs). The most prominent member of the ARTD family, poly(ADP-ribose) polymerase-1 (ARTD1/PARP1) has been a target for cancer drug development for decades. Current PARP inhibitors are generally non-selective, and inhibit the mono-ADP-ribosyltransferases with low potency. Here we describe the synthesis of acylated amino benzamides and screening against the mono-ADP-ribosyltransferases ARTD7/PARP15, ARTD8/PARP14, ARTD10/PARP10, and the poly-ADP-ribosyltransferase ARTD1/PARP1. The most potent compound inhibits ARTD10 with sub-micromolar IC50.
Assuntos
ADP Ribose Transferases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Concentração Inibidora 50Assuntos
Doença Celíaca/epidemiologia , Adulto , Anticorpos/sangue , Biomarcadores/sangue , Doença Celíaca/diagnóstico , Doença Celíaca/tratamento farmacológico , Criança , Dieta Livre de Glúten , Neoplasias Gastrointestinais/etiologia , Gliadina/imunologia , Humanos , Mucosa Intestinal/patologia , Miosinas/imunologia , Prevalência , Fatores de Risco , Sensibilidade e Especificidade , Transglutaminases/imunologiaRESUMO
In high-throughput screening (HTS) a robust assay is used to interrogate a large collection of small organic molecules in order to find compounds, hits, with a desired biological activity. The hits are then further explored by an iterative process where new compounds are designed, purchased, or synthesized, followed by an evaluation in one or more assays. Statistical molecular design (SMD) is a useful method to select a balanced, varied, and information-rich compound collection based on hits from HTS in order to create a foundation for development of optimized compounds with improved properties. In this chapter, we describe the use of SMD to explore a hit obtained from small-molecule screening.