Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Am J Transplant ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432328

RESUMO

Allogeneic intraportal islet transplantation (ITx) has become an established treatment for patients with poorly controlled type 1 diabetes. However, the loss of viable beta-cell mass after transplantation remains a major challenge. Therefore, noninvasive imaging methods for long-term monitoring of the transplant fate are required. In this study, [68Ga]Ga-DOTA-exendin-4 positron emission tomography/computed tomography (PET/CT) was used for repeated monitoring of allogeneic neonatal porcine islets (NPI) after intraportal transplantation into immunosuppressed genetically diabetic pigs. NPI transplantation (3320-15,000 islet equivalents per kg body weight) led to a reduced need for exogenous insulin therapy and finally normalization of blood glucose levels in 3 out of 4 animals after 5 to 10 weeks. Longitudinal PET/CT measurements revealed a significant increase in standard uptake values in graft-bearing livers. Histologic analysis confirmed the presence of well-engrafted, mature islet clusters in the transplanted livers. Our study presents a novel large animal model for allogeneic intraportal ITx. A relatively small dose of NPIs was sufficient to normalize blood glucose levels in a clinically relevant diabetic pig model. [68Ga]Ga-DOTA-exendin-4 PET/CT proved to be efficacious for longitudinal monitoring of islet transplants. Thus, it could play a crucial role in optimizing ITx as a curative therapy for type 1 diabetes.

2.
Mol Cell Neurosci ; 120: 103721, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35338004

RESUMO

An acute unilateral vestibulopathy leads to symptoms of vestibular tone imbalance, which gradually decrease over days to weeks due to central vestibular compensation. Animal models of acute peripheral vestibular lesions are optimally suited to investigate the mechanisms underlying this lesion-induced adaptive neuroplasticity. Previous studies applied ex vivo histochemical techniques or local in vivo electrophysiological recordings mostly in the vestibular nucleus complex to delineate the mechanisms involved. Recently, the use of imaging methods, such as positron emission tomography (PET) or magnetic resonance imaging (MRI), in vestibular animal models have opened a complementary perspective by depicting whole-brain structure and network changes of neuronal activity over time and in correlation to behaviour. Here, we review recent multimodal imaging studies in vestibular animal models with a focus on PET-based measurements of glucose metabolism, glial activation and synaptic plasticity. [18F]-FDG-PET studies indicate dynamic alterations of regional glucose metabolism in brainstem-cerebellar, thalamic, cortical sensory and motor, as well as limbic areas starting early after unilateral labyrinthectomy (UL) in the rat. Sequential whole-brain analysis of the metabolic connectome during vestibular compensation shows a significant increase of connections mostly in the contralesional hemisphere after UL, which reaches a maximum at day 3 and thereby parallels the course of vestibular recovery. Glial activation in the ipsilesional vestibular nerve and nucleus peak between days 7 and 15 after UL. Synaptic density in brainstem-cerebellar circuits decreases until 8 weeks after UL, while it increases in frontal, motor and sensory cortical areas. We finally report how pharmacological compounds modulate the functional and structural plasticity mechanisms during vestibular compensation.


Assuntos
Vestíbulo do Labirinto , Animais , Glucose/metabolismo , Modelos Animais , Plasticidade Neuronal/fisiologia , Tomografia por Emissão de Pósitrons/métodos , Ratos , Vestíbulo do Labirinto/metabolismo
3.
Neuroimage ; 226: 117588, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33249212

RESUMO

Unilateral damage to the inner ear results in an acute vestibular syndrome, which is compensated within days to weeks due to adaptive cerebral plasticity. This process, called central vestibular compensation (VC), involves a wide range of functional and structural mechanisms at the cellular and network level. The short-term dynamics of whole-brain functional network recruitment and recalibration during VC has not been depicted in vivo. The purpose of this study was to investigate the interplay of separate and distinct brain regions and in vivo networks in the course of VC by sequential [18F]-FDG-PET-based statistical and graph theoretical analysis with the aim of revealing the metabolic connectome before and 1, 3, 7, and 15 days post unilateral labyrinthectomy (UL) in the rat. Temporal changes in metabolic brain connectivity were determined by Pearson's correlation (|r| > 0.5, p < 0.001) of regional cerebral glucose metabolism (rCGM) in 57 segmented brain regions. Metabolic connectivity analysis was compared to univariate voxel-wise statistical analysis of rCGM over time and to behavioral scores of static and dynamic sensorimotor recovery. Univariate statistical analysis revealed an ipsilesional relative rCGM decrease (compared to baseline) and a contralesional rCGM increase in vestibular and limbic networks and an increase in bilateral cerebellar and sensorimotor networks. Quantitative analysis of the metabolic connections showed a maximal increase from baseline to day 3 post UL (interhemispheric: 2-fold, ipsilesional: 3-fold, contralesional: 12-fold) and a gradual decline until day 15 post UL, which paralleled the dynamics of vestibular symptoms. In graph theoretical analysis, an increase in connectivity occurred especially within brain regions associated with brainstem-cerebellar and thalamocortical vestibular networks and cortical sensorimotor networks. At the symptom peak (day 3 post UL), brain networks were found to be organized in large ensembles of distinct and highly connected hubs of brain regions, which separated again with progressing VC. Thus, we found rapid changes in network organization at the subcortical and cortical level and in both hemispheres, which may indicate an initial functional substitution of vestibular loss and subsequent recalibration and reorganization of sensorimotor networks during VC.


Assuntos
Adaptação Fisiológica , Encéfalo/diagnóstico por imagem , Plasticidade Neuronal , Doenças Vestibulares/diagnóstico por imagem , Vestíbulo do Labirinto/lesões , Animais , Ácido Arsanílico/toxicidade , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Conectoma , Fluordesoxiglucose F18 , Glucose/metabolismo , Locomoção/fisiologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/metabolismo , Vias Neurais/fisiopatologia , Nistagmo Patológico/fisiopatologia , Tomografia por Emissão de Pósitrons , Equilíbrio Postural/fisiologia , Compostos Radiofarmacêuticos , Ratos , Doenças Vestibulares/metabolismo , Doenças Vestibulares/fisiopatologia
4.
Neuroimage ; 235: 118007, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33831550

RESUMO

Metabolic connectivity patterns on the basis of [18F]-FDG positron emission tomography (PET) are used to depict complex cerebral network alterations in different neurological disorders and therefore may have the potential to support diagnostic decisions. In this study, we established a novel statistical classification method taking advantage of differential time-dependent states of whole-brain metabolic connectivity following unilateral labyrinthectomy (UL) in the rat and explored its classification accuracy. The dataset consisted of repeated [18F]-FDG PET measurements at baseline and 1, 3, 7, and 15 days (= maximum of 5 classes) after UL with 17 rats per measurement day. Classification in different stages after UL was performed by determining connectivity patterns for the different classes by Pearson's correlation between uptake values in atlas-based segmented brain regions. Connections were fitted with a linear function, with which different thresholds on the correlation coefficient (r = [0.5, 0.85]) were investigated. Rats were classified by determining the congruence of their PET uptake pattern with the fitted connectivity patterns in the classes. Overall, the classification accuracy with this method was 84.3% for 3 classes, 75.0% for 4 classes, and 54.1% for 5 classes and outperformed random classification as well as machine learning classification on the same dataset. The optimal classification thresholds of the correlation coefficient and distance-to-fit were found to be |r| > 0.65 and d = 4 when using Siegel's slope estimator for fitting. This connectivity-based classification method can compete with machine learning classification and may have methodological advantages when applied to support PET-based diagnostic decisions in neurological network disorders (such as neurodegenerative syndromes).


Assuntos
Encéfalo/metabolismo , Glucose/metabolismo , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/metabolismo , Neuroimagem/métodos , Tomografia por Emissão de Pósitrons/métodos , Animais , Encéfalo/diagnóstico por imagem , Fluordesoxiglucose F18 , Masculino , Neuroimagem/normas , Tomografia por Emissão de Pósitrons/normas , Compostos Radiofarmacêuticos , Ratos , Ratos Sprague-Dawley
5.
Neurobiol Dis ; 118: 9-21, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29933054

RESUMO

Psychiatric comorbidities are prevalent in patients with epilepsy and greatly contribute to the overall burden of disease. The availability of reliable biomarkers to diagnose epilepsy-associated comorbidities would allow for effective treatment and improved disease management. Due to their non-invasive nature, molecular imaging techniques such as positron emission tomography (PET) are ideal tools to measure pathologic changes. In the current study we investigated the potential of [18F]fluoro-2-deoxy-d-glucose ([18F]FDG) and 2'-methoxyphenyl-(N-2'-pyridinyl)-p-18F-fluoro-benzamidoethylpiperazine ([18F]MPPF) as imaging correlates of neurobehavioral comorbidities in the pilocarpine rat model of epilepsy. Findings from rats with epilepsy revealed a regional reduction in [18F]FDG uptake indicating thalamic hypometabolism. In addition, an increase in septal [18F]MPPF binding was observed in rats with spontaneous recurrent seizures. Both thalamic [18F]FDG and septal [18F]MPPF data proved to correlate with behavioral alterations including decreases in luxury behavior such as burrowing and social interaction, and changes in behavioral patterns in anxiety tests. A correlation with seizure frequency was confirmed for thalamic [18F]FDG data. Moreover, thalamic [18F]FDG and septal [18F]MPPF data exhibited a correlation with brain-derived neurotrophic factor (BDNF) serum concentrations, which were lowered in rats with epilepsy. In conclusion, µPET data from rats with pilocarpine-induced epileptogenesis indicate altered septal 5-HT1A receptor binding. Further research is necessary assessing whether septal 5-HT1A receptor binding may serve as an imaging correlate of neuropsychiatric comorbidities in epilepsy patients and for severity assessment in rodent epilepsy models. In contrast, we obtained evidence that [18F]FDG uptake also reflects the severity of epilepsy and, thus, might not constitute a biomarker with sufficient specificity for psychiatric comorbidities. Evidence has been obtained that BDNF might serve as a peripheral circulatory biomarker. Further experimental and clinical assessment is necessary for validation of the marker candidates.


Assuntos
Epilepsia/induzido quimicamente , Epilepsia/diagnóstico por imagem , Relações Interpessoais , Pilocarpina/toxicidade , Tomografia por Emissão de Pósitrons/métodos , Animais , Modelos Animais de Doenças , Epilepsia/metabolismo , Feminino , Transtornos Mentais/induzido quimicamente , Transtornos Mentais/diagnóstico por imagem , Transtornos Mentais/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor 5-HT1A de Serotonina/metabolismo
6.
Epilepsia ; 59(12): 2194-2205, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30370531

RESUMO

OBJECTIVE: In patients with epilepsy, psychiatric comorbidities can significantly affect the disease course and quality of life. Detecting and recognizing these comorbidities is central in determining an optimal treatment plan. One promising tool in detecting biomarkers for psychiatric comorbidities in epilepsy is positron emission tomography (PET). METHODS: Behavioral and biochemical variables were cross-correlated with the results from two µPET scans using the tracers [18 F]fluoro-2-deoxy-D-glucose ([18 F]FDG) and 2'-methoxyphenyl-(N-2'-pyridinyl)-p-18 F-fluoro-benzamidoethylpiperazine ([18 F]MPPF) to explore potential biomarkers for neurobehavioral comorbidities in an electrically induced post-status epilepticus rat model of epilepsy. RESULTS: In rats with epilepsy, µPET analysis revealed a local reduction in hippocampal [18 F]FDG uptake, and a local increase in [18 F]MPPF binding. These changes exhibited a correlation with burrowing as a "luxury" behavior, social interaction, and anxiety-associated behavioral patterns. Interestingly, hippocampal [18 F]FDG uptake did not correlate with spontaneous recurrent seizure activity. SIGNIFICANCE: In the electrically induced post-status epilepticus rat model, we demonstrated hippocampal hypometabolism and its correlation with a range of neurobehavioral alterations. These findings require further confirmation in other preclinical models and patients with epilepsy and psychiatric disorders to address the value of [18 F]FDG uptake as an imaging biomarker candidate for psychiatric comorbidities in patients as well as for severity assessment in rodent epilepsy models.


Assuntos
Tomografia por Emissão de Pósitrons/métodos , Estado Epiléptico/diagnóstico por imagem , Estado Epiléptico/psicologia , Animais , Ansiedade/etiologia , Ansiedade/psicologia , Biomarcadores , Eletrodos Implantados , Eletrochoque , Feminino , Fluordesoxiglucose F18 , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Comportamento de Nidação , Compostos Radiofarmacêuticos , Ratos , Ratos Sprague-Dawley , Comportamento Social , Estado Epiléptico/metabolismo
7.
Biomolecules ; 13(11)2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-38002261

RESUMO

Low-intensity noisy galvanic vestibular stimulation (nGVS) can improve static and dynamic postural deficits in patients with bilateral vestibular loss (BVL). In this study, we aimed to explore the neurophysiological and neuroanatomical substrates underlying nGVS treatment effects in a rat model of BVL. Regional brain activation patterns and behavioral responses to a repeated 30 min nGVS treatment in comparison to sham stimulation were investigated by serial whole-brain 18F-FDG-PET measurements and quantitative locomotor assessments before and at nine consecutive time points up to 60 days after the chemical bilateral labyrinthectomy (BL). The 18F-FDG-PET revealed a broad nGVS-induced modulation on regional brain activation patterns encompassing biologically plausible brain networks in the brainstem, cerebellum, multisensory cortex, and basal ganglia during the entire observation period post-BL. nGVS broadly reversed brain activity adaptions occurring in the natural course post-BL. The parallel behavioral locomotor assessment demonstrated a beneficial treatment effect of nGVS on sensory-ataxic gait alterations, particularly in the early stage of post-BL recovery. Stimulation-induced locomotor improvements were finally linked to nGVS brain activity responses in the brainstem, hemispheric motor, and limbic networks. In conclusion, combined 18F-FDG-PET and locomotor analysis discloses the potential neurophysiological and neuroanatomical substrates that mediate previously observed therapeutic nGVS effects on postural deficits in patients with BVL.


Assuntos
Vestibulopatia Bilateral , Vestíbulo do Labirinto , Humanos , Animais , Ratos , Vestibulopatia Bilateral/terapia , Fluordesoxiglucose F18 , Vestíbulo do Labirinto/fisiologia , Equilíbrio Postural/fisiologia , Estimulação Elétrica , Encéfalo/diagnóstico por imagem
8.
EJNMMI Res ; 13(1): 75, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572238

RESUMO

BACKGROUND: Several software tools have been developed for gated PET imaging that use distinct algorithms to analyze tracer uptake, myocardial perfusion, and left ventricle volumes and function. Studies suggest that different software tools cannot be used interchangeably in humans. In this study, we sought to compare the left ventricular parameters in gated 18F-FDG PET/CT imaging in mice by three commercially available software tools: PMOD, MIM, and QGS. METHODS AND RESULTS: Healthy mice underwent ECG-gated 18F-FDG imaging using a small-animal nanoPET/CT (Mediso) under isoflurane narcosis. Reconstructed gates PET images were subsequently analyzed in three different software tools, and cardiac volume and function (end-diastolic (EDV), end-systolic volumes (ESV), stroke volume (SV), and ejection fraction (EF)) were evaluated. While cardiac volumes correlated well between PMOD, MIM, and QGS, the left ventricular parameters and cardiac function differed in agreement using Bland-Altman analysis. EDV in PMOD vs. QGS: r = 0.85; p < 0.001, MIM vs. QGS: r = 0.92; p < 0.001, and MIM vs. PMOD: r = 0.88; p < 0.001, showed good correlations. Correlation was also found in ESV: PMOD vs. QGS: r = 0.48; p = 0.07, MIM vs QGS: r = 0.79; p < 0.001, and MIM vs. PMOD: r = 0.69; p < 0.01. SV showed good correlations in: PMOD vs. QGS: r = 0.73; p < 0.01, MIM vs. QGS: r = 0.86; p < 0.001, and MIM vs. PMOD: r = 0.92; p < 0.001. However, EF among correlated poorly: PMOD vs. QGS: r = -0.31; p = 0.26, MIM vs. QGS: r = 0.48; p = 0.07, and MIM vs. PMOD: r = 0.23; p = 0.41. Inter-class and intra-class correlation coefficient were > 0.9 underlining repeatability in using PMOD, MIM, and QGS for cardiac volume and function assessment. CONCLUSIONS: All three commercially available software tools are feasible in small animal cardiac volume assessment in gated 18F-FDG PET/CT imaging. However, due to software-related differences in agreement analysis for cardiac volumes and function, PMOD, MIM, and QGS cannot be used interchangeably in murine research.

9.
Front Neurol ; 14: 1175481, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538257

RESUMO

Introduction: Betahistine is widely used for the treatment of various vestibular disorders. However, the approved oral administration route and maximum daily dose are evidently not effective in clinical trials, possibly due to a major first-pass metabolism by monoamine oxidases (MAOs). The current study aimed to test different application routes (i.v./s.c./p.o.), doses, and concurrent medication (with the MAO-B inhibitor selegiline) for their effects on behavioral recovery and cerebral target engagement following unilateral labyrinthectomy (UL) in rats. Methods: Sixty rats were subjected to UL by transtympanic injection of bupivacaine/arsanilic acid and assigned to five treatment groups: i.v. low-dose betahistine (1 mg/kg bid), i.v. high-dose betahistine (10 mg/kg bid), p.o. betahistine (1 mg/kg bid)/selegiline (1 mg/kg once daily), s.c. betahistine (continuous release of 4.8 mg/day), and i.v. normal saline bid (sham treatment; days 1-3 post-UL), respectively. Behavioral testing of postural asymmetry, nystagmus, and mobility in an open field was performed seven times until day 30 post-UL and paralleled by sequential cerebral [18F]-FDG-µPET measurements. Results: The therapeutic effects of betahistine after UL differed in extent and time course and were dependent on the dose, application route, and selegiline co-medication: Postural asymmetry was significantly reduced on 2-3 days post-UL by i.v. high-dose and s.c. betahistine only. No changes were observed in the intensity of nystagmus across groups. When compared to sham treatment, movement distance in the open field increased up to 5-fold from 2 to 30 days post-UL in the s.c., i.v. high-dose, and p.o. betahistine/selegiline groups. [18F]-FDG-µPET showed a dose-dependent rCGM increase in the ipsilesional vestibular nucleus until day 3 post-UL for i.v. high- vs. low-dose betahistine and sham treatment, as well as for p.o. betahistine/selegiline and s.c. betahistine vs. sham treatment. From 1 to 30 days post-UL, rCGM increased in the thalamus bilaterally for i.v. high-dose betahistine, s.c. betahistine, and p.o. betahistine/selegiline vs. saline treatment. Discussion: Betahistine has the potential to augment the recovery of dynamic deficits after UL if the administration protocol is optimized toward higher effective plasma levels. This may be achieved by higher doses, inhibition of MAO-based metabolism, or a parenteral route. In vivo imaging suggests a drug-target engagement in central vestibular networks.

10.
Sci Rep ; 12(1): 6049, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35411002

RESUMO

Neuronal lesions trigger mechanisms of structural and functional neuroplasticity, which can support recovery. However, the temporal and spatial appearance of structure-function changes and their interrelation remain unclear. The current study aimed to directly compare serial whole-brain in vivo measurements of functional plasticity (by [18F]FDG-PET) and structural synaptic plasticity (by [18F]UCB-H-PET) before and after bilateral labyrinthectomy in rats and investigate the effect of locomotor training. Complex structure-function changes were found after bilateral labyrinthectomy: in brainstem-cerebellar circuits, regional cerebral glucose metabolism (rCGM) decreased early, followed by reduced synaptic density. In the thalamus, increased [18F]UCB-H binding preceded a higher rCGM uptake. In frontal-basal ganglia loops, an increase in synaptic density was paralleled by a decrease in rCGM. In the group with locomotor training, thalamic rCGM and [18F]UCB-H binding increased following bilateral labyrinthectomy compared to the no training group. Rats with training had considerably fewer body rotations. In conclusion, combined [18F]FDG/[18F]UCB-H dual tracer imaging reveals that adaptive neuroplasticity after bilateral vestibular loss is not a uniform process but is composed of complex spatial and temporal patterns of structure-function coupling in networks for vestibular, multisensory, and motor control, which can be modulated by early physical training.


Assuntos
Vestibulopatia Bilateral , Fluordesoxiglucose F18 , Animais , Encéfalo/metabolismo , Fluordesoxiglucose F18/metabolismo , Plasticidade Neuronal , Tomografia por Emissão de Pósitrons/métodos , Ratos
11.
Dis Model Mech ; 14(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34796900

RESUMO

Large-animal models for Duchenne muscular dystrophy (DMD) are crucial for the evaluation of diagnostic procedures and treatment strategies. Pigs cloned from male cells lacking DMD exon 52 (DMDΔ52) exhibit molecular, clinical and pathological hallmarks of DMD, but die before sexual maturity and cannot be propagated by breeding. Therefore, we generated female DMD+/- carriers. A single founder animal had 11 litters with 29 DMDY/-, 34 DMD+/- as well as 36 male and 29 female wild-type offspring. Breeding with F1 and F2 DMD+/- carriers resulted in an additional 114 DMDY/- piglets. With intensive neonatal management, the majority survived for 3-4 months, providing statistically relevant cohorts for experimental studies. Pathological investigations and proteome studies of skeletal muscles and myocardium confirmed the resemblance to human disease mechanisms. Importantly, DMDY/- pigs displayed progressive myocardial fibrosis and increased expression of connexin-43, associated with significantly reduced left ventricular ejection fraction, at 3 months. Furthermore, behavioral tests provided evidence for impaired cognitive ability. Our breeding cohort of DMDΔ52 pigs and standardized tissue repositories provide important resources for studying DMD disease mechanisms and for testing novel treatment strategies.


Assuntos
Cardiomiopatias , Distrofia Muscular de Duchenne , Animais , Cardiomiopatias/patologia , Feminino , Humanos , Masculino , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Volume Sistólico , Suínos , Função Ventricular Esquerda
12.
Front Neurol ; 10: 147, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30858822

RESUMO

Unilateral inner ear damage is followed by behavioral recovery due to central vestibular compensation. The dose-dependent therapeutic effect of Ginkgo biloba extract EGb 761 on vestibular compensation was investigated by behavioral testing and serial cerebral [18F]-Fluoro-desoxyglucose ([18F]-FDG)-µPET in a rat model of unilateral labyrinthectomy (UL). Five groups of 8 animals each were treated with EGb 761-supplemented food at doses of 75, 37.5 or 18.75 mg/kg body weight 6 weeks prior and 15 days post UL (groups A,B,C), control food prior and EGb 761-supplemented food (75 mg/kg) for 15 days post UL (group D), or control food throughout (group E). Plasma levels of EGb 761 components bilobalide, ginkgolide A and B were analyzed prior and 15 days post UL. Behavioral testing included clinical scoring of nystagmus, postural asymmetry, head roll tilt, body rotation during sensory perturbation and instrumental registration of mobility in an open field before and 1, 2, 3, 5, 7, 15 days after UL. Whole-brain [18F]-FDG-µPET was recorded before and 1, 3, 7, 15 days after UL. The EGb 761 group A (75 mg/kg prior/post UL) showed a significant reduction of nystagmus scores (day 3 post UL), of postural asymmetry (1, 3, 7 days post UL), and an increased mobility in the open field (day 7 post UL) as compared to controls (group E). Application of EGb 761 at doses of 37.5 and 18.75 mg/kg prior/post UL (groups B,C) resulted in faster recovery of postural asymmetry, but did not influence mobility relative to controls. Locomotor velocity increased with higher plasma levels of ginkgolide A and B. [18F]-FDG-µPET revealed a significant decrease of the regional cerebral glucose metabolism (rCGM) in the vestibular nuclei and cerebellum and an increase in the hippocampal formation with higher plasma levels of ginkgolides and bilobalide 1 and 3 days post UL. Decrease of rCGM in the vestibular nucleus area and increase in the hippocampal formation with higher plasma levels persisted until day 15 post UL. In conclusion, Ginkgo biloba extract EGb 761 improves vestibulo-ocular motor, vestibulo-spinal compensation, and mobility after UL. This rat study supports the translational approach to investigate EGb 761 at higher dosages for acceleration of vestibular compensation in acute vestibular loss.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA