Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 58(16): 2854-2865, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28723228

RESUMO

Norovirus (NoV) and Hepatitis A virus (HAV) are the most important viral hazards associated with human illness following consumption of contaminated bivalve molluscs. The effectiveness of the current EU criteria for heat processing of bivalve molluscs (i.e. raising the temperature of the internal mollusc flesh to at least 90°C for a minimum of 90 seconds) was evaluated using predictive microbiology. A HAV thermal inactivation model was developed based on literature data in mollusc matrices during isothermal heat treatment. Application of the developed model demonstrated that the 90°C-90 s requirement may lead to significantly different virus inactivation depending on the commercial process design. This shows the need for the establishment of a Performance Criterion for bivalve molluscs heat processing which will assure a common specified level of consumer protection. A risk-based approach is described that allows for an effective processing design providing a more transparent and objective relation between the thermal processing targets and public health. Model simulations demonstrate that the F-value is a more appropriate Process Criterion than a single time-temperature combination since it enables the food business operators to design a process that is compliant with the safety requirements while at the same time achieving a desired product quality.


Assuntos
Bivalves/virologia , Manipulação de Alimentos/métodos , Temperatura Alta , Vírus/efeitos da radiação , Animais , Inocuidade dos Alimentos
2.
Food Microbiol ; 75: 82-89, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30056967

RESUMO

The use of Quantitative Microbial Exposure Assessment (QMEA) modelling of faecal hygiene indicator microorganisms (e.g. E. coli), is proposed as an alternative approach to the use of Quantitative Microbiological Risk Assessment (QMRA) models of enteric pathogenic microorganisms in the fresh produce chain. As more field data and quantitative microbial models become available, the potential use of QMEA models as a tool to assess the impact of different risk mitigation strategies increases helping growers to make the right decisions. This paper focuses on the pros and cons of previously published QMRAs as well as on the proposal of an alternative approach based on the use of a quantitative microbial contamination modelling to investigate how the selection of the irrigation water sources affect the E. coli loads in leafy greens at harvest. The modified model describes the final E. coli levels of baby spinach when different water sources with different contamination levels are applied and the impact of seasonality. Substantial differences were observed between the irrigation water sources while seasonality only had small effects on the simulated levels of E. coli in the harvested baby spinach. Based on the results, the produce grown using irrigation water from drainage ditches show E. coli levels above threshold levels (2 log CFU/g) while less than 1% of baby spinach irrigated with water obtained from water reservoirs where above this limit. The use of this QMEA model will help growers in the decision-making process to reduce microbial contamination of leafy greens.


Assuntos
Irrigação Agrícola , Fezes/microbiologia , Contaminação de Alimentos/análise , Folhas de Planta/crescimento & desenvolvimento , Spinacia oleracea/microbiologia , Microbiologia da Água , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/isolamento & purificação , Higiene , Modelos Biológicos , Folhas de Planta/microbiologia , Estações do Ano , Spinacia oleracea/crescimento & desenvolvimento
3.
Food Microbiol ; 61: 50-57, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27697169

RESUMO

The primary objective of this study was to characterise (microbiology and physical parameters) beef carcasses and primals during chilled storage. A minor aim was to compare observed growth of key spoilage bacteria on carcasses with that predicted by ComBase and the Food Safety Spoilage Predictor (FSSP). Total viable count (TVC), total Enterobacteriacae count (TEC), Pseudomonas spp., lactic acid bacteria (LAB), Brochothrix thermosphacta and Clostridium spp. were monitored on beef carcasses (n = 30) and primals (n = 105) during chilled storage using EC Decision 2001/471/EC and ISO sampling/laboratory procedures. The surface and/or core temperature, pH and water activity (aw) were also recorded. Clostridium (1.89 log10 cfu/cm2) and Pseudomonas spp. (2.12 log10 cfu/cm2) were initially the most prevalent bacteria on carcasses and primals, respectively. The shortest mean generation time (G) was observed on carcasses with Br. thermosphacta (20.3 h) and on primals with LAB (G = 68.8 h) and Clostridium spp. (G = 67 h). Over the course of the experiment the surface temperature decreased from 37 °C to 0 °C, pH from 7.07 to 5.65 and aw from 0.97 to 0.93 The observed Pseudomonas spp. and Br. thermosphacta growth was more or less within the range of predictions of Combase. In contrast, the FSSP completely overestimated the growth of LAB. This study contributes to the very limited microbiological data on beef carcasses and primals during chilling.


Assuntos
Embalagem de Alimentos , Armazenamento de Alimentos , Carne Vermelha/microbiologia , Temperatura , Animais , Brochothrix/crescimento & desenvolvimento , Brochothrix/isolamento & purificação , Bovinos , Microbiologia de Alimentos , Conservação de Alimentos , Lactobacillaceae/crescimento & desenvolvimento , Lactobacillaceae/isolamento & purificação , Pseudomonas/crescimento & desenvolvimento , Pseudomonas/isolamento & purificação , Vácuo
4.
EFSA J ; 22(4): e8745, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38681740

RESUMO

Two alternative methods for producing compost in a tunnel, from certain category (Cat.) 3 animal by-products (ABP) and other non-ABP material, were assessed. The first method proposed a minimum temperature of 55°C for 72 h and the second 60°C for 48 h, both with a maximum particle size of 200 mm. The assessment of the Panel on Biological Hazards (BIOHAZ) exclusively focused on Cat. 3 ABP materials (catering waste and processed foodstuffs of animal origin no longer intended for human consumption). The proposed composting processes were evaluated for their efficacy to achieve a reduction of at least 5 log10 of Enterococcus faecalis and Salmonella Senftenberg (775W, H2S negative) and at least 3 log10 of relevant thermoresistant viruses. The applicant provided a list of biological hazards that may enter the composting process and selected parvoviruses as the indicator of the thermoresistant viruses. The evidence provided by the applicant included: (a) literature data on thermal inactivation of biological hazards; (b) results from validation studies on the reduction of E. faecalis, Salmonella Senftenberg 775W H2S negative and canine parvovirus carried out in composting plants across Europe; (c) and experimental data from direct measurements of reduction of infectivity of murine parvovirus in compost material applying the time/temperature conditions of the two alternative methods. The evidence provided showed the capacity of the proposed alternative methods to reduce E. faecalis and Salmonella Senftenberg 775W H2S negative by at least 5 log10, and parvoviruses by at least 3 log10. The BIOHAZ Panel concluded that the two alternative methods under assessment can be considered to be equivalent to the processing method currently approved in the Commission Regulation (EU) No 142/2011.

5.
EFSA J ; 22(1): e8521, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38250499

RESUMO

Listeria monocytogenes (in the meat, fish and seafood, dairy and fruit and vegetable sectors), Salmonella enterica (in the feed, meat, egg and low moisture food sectors) and Cronobacter sakazakii (in the low moisture food sector) were identified as the bacterial food safety hazards most relevant to public health that are associated with persistence in the food and feed processing environment (FFPE). There is a wide range of subtypes of these hazards involved in persistence in the FFPE. While some specific subtypes are more commonly reported as persistent, it is currently not possible to identify universal markers (i.e. genetic determinants) for this trait. Common risk factors for persistence in the FFPE are inadequate zoning and hygiene barriers; lack of hygienic design of equipment and machines; and inadequate cleaning and disinfection. A well-designed environmental sampling and testing programme is the most effective strategy to identify contamination sources and detect potentially persistent hazards. The establishment of hygienic barriers and measures within the food safety management system, during implementation of hazard analysis and critical control points, is key to prevent and/or control bacterial persistence in the FFPE. Once persistence is suspected in a plant, a 'seek-and-destroy' approach is frequently recommended, including intensified monitoring, the introduction of control measures and the continuation of the intensified monitoring. Successful actions triggered by persistence of L. monocytogenes are described, as well as interventions with direct bactericidal activity. These interventions could be efficient if properly validated, correctly applied and verified under industrial conditions. Perspectives are provided for performing a risk assessment for relevant combinations of hazard and food sector to assess the relative public health risk that can be associated with persistence, based on bottom-up and top-down approaches. Knowledge gaps related to bacterial food safety hazards associated with persistence in the FFPE and priorities for future research are provided.

6.
EFSA J ; 22(1): e8517, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38213415

RESUMO

The qualified presumption of safety (QPS) process was developed to provide a safety assessment approach for microorganisms intended for use in food or feed chains. The QPS approach is based on an assessment of published data for each taxonomic unit (TU), with respect to its taxonomic identity, the body of relevant knowledge and safety concerns. Safety concerns identified for a TU are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. In the period covered by this Statement, no new information was found that would change the status of previously recommended QPS TUs. Of 71 microorganisms notified to EFSA between April and September 2023 (30 as feed additives, 22 as food enzymes or additives, 7 as novel foods and 12 from plant protection products [PPP]), 61 were not evaluated because: 26 were filamentous fungi, 1 was Enterococcus faecium, 5 were Escherichia coli, 1 was a bacteriophage (all excluded from the QPS evaluation) and 28 were TUs that already have a QPS status. The other 10 notifications belonged to 9 TUs which were evaluated for a possible QPS status: Ensifer adhaerens and Heyndrickxia faecalis did not get the QPS recommendation due to the limited body of knowledge about their occurrence in the food and/or feed chains and Burkholderia ubonensis also due to its ability to generate biologically active compounds with antimicrobial activity; Klebsiella pneumoniae, Serratia marcescens and Pseudomonas putida due to safety concerns. K. pneumoniae is excluded from future QPS evaluations. Chlamydomonas reinhardtii is recommended for QPS status with the qualification 'for production purposes only'; Clostridium tyrobutyricum is recommended for QPS status with the qualification 'absence of genetic determinants for toxigenic activity'; Candida oleophila has been added as a synonym of Yarrowia lipolytica. The Panel clarifies the extension of the QPS status for genetically modified strains.

7.
EFSA J ; 22(4): e8719, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38650612

RESUMO

Surveillance data published since 2010, although limited, showed that there is no evidence of zoonotic parasite infection in market quality Atlantic salmon, marine rainbow trout, gilthead seabream, turbot, meagre, Atlantic halibut, common carp and European catfish. No studies were found for greater amberjack, brown trout, African catfish, European eel and pikeperch. Anisakis pegreffii, A. simplex (s. s.) and Cryptocotyle lingua were found in European seabass, Atlantic bluefin tuna and/or cod, and Pseudamphistomum truncatum and Paracoenogonimus ovatus in tench, produced in open offshore cages or flow-through ponds or tanks. It is almost certain that fish produced in closed recirculating aquaculture systems (RAS) or flow-through facilities with filtered water intake and exclusively fed heat-treated feed are free of zoonotic parasites. Since the last EFSA opinion, the UV-press and artificial digestion methods have been developed into ISO standards to detect parasites in fish, while new UV-scanning, optical, molecular and OMICs technologies and methodologies have been developed for the detection, visualisation, isolation and/or identification of zoonotic parasites in fish. Freezing and heating continue to be the most efficient methods to kill parasites in fishery products. High-pressure processing may be suitable for some specific products. Pulsed electric field is a promising technology although further development is needed. Ultrasound treatments were not effective. Traditional dry salting of anchovies successfully inactivated Anisakis. Studies on other traditional processes - air-drying and double salting (brine salting plus dry salting) - suggest that anisakids are successfully inactivated, but more data covering these and other parasites in more fish species and products is required to determine if these processes are always effective. Marinade combinations with anchovies have not effectively inactivated anisakids. Natural products, essential oils and plant extracts, may kill parasites but safety and organoleptic data are lacking. Advanced processing techniques for intelligent gutting and trimming are being developed to remove parasites from fish.

8.
Int J Food Microbiol ; 403: 110302, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37392608

RESUMO

EFSA's Panel on Biological Hazards (BIOHAZ Panel) deals with questions on biological hazards relating to food safety and food-borne diseases. This covers food-borne zoonoses, transmissible spongiform encephalopathies, antimicrobial resistance, food microbiology, food hygiene, animal-by products, and associated waste management issues. The scientific assessments are diverse and frequently the development of new methodological approaches is required to deal with a mandate. Among the many risk factors, product characteristics (pH, water activity etc.), time and temperature of processing and storage along the food supply chain are highly relevant for assessing the biological risks. Therefore, predictive microbiology becomes an essential element of the assessments. Uncertainty analysis is incorporated in all BIOHAZ scientific assessments, to meet the general requirement for transparency. Assessments should clearly and unambiguously state what sources of uncertainty have been identified and their impact on the conclusions of the assessment. Four recent BIOHAZ Scientific Opinions are presented to illustrate the use of predictive modelling and quantitative microbial risk assessment principles in regulatory science. The Scientific Opinion on the guidance on date marking and related food information, gives a general overview on the use of predictive microbiology for shelf-life assessment. The Scientific Opinion on the efficacy and safety of high-pressure processing of food provides an example of inactivation modelling and compliance with performance criteria. The Scientific Opinion on the use of the so-called 'superchilling' technique for the transport of fresh fishery products illustrates the combination of heat transfer and microbial growth modelling. Finally, the Scientific Opinion on the delayed post-mortem inspection in ungulates, shows how variability and uncertainty, were quantitatively embedded in assessing the probability of Salmonella detection on carcasses, via stochastic modelling and expert knowledge elicitation.


Assuntos
Microbiologia de Alimentos , Doenças Transmitidas por Alimentos , Animais , Zoonoses , Inocuidade dos Alimentos , Medição de Risco/métodos
9.
EFSA J ; 21(1): e07745, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36698487

RESUMO

The impact of dry-ageing of beef and wet-ageing of beef, pork and lamb on microbiological hazards and spoilage bacteria was examined and current practices are described. As 'standard fresh' and wet-aged meat use similar processes these were differentiated based on duration. In addition to a description of the different stages, data were collated on key parameters (time, temperature, pH and aw) using a literature survey and questionnaires. The microbiological hazards that may be present in all aged meats included Shiga toxin-producing Escherichia coli (STEC), Salmonella spp., Staphylococcus aureus, Listeria monocytogenes, enterotoxigenic Yersinia spp., Campylobacter spp. and Clostridium spp. Moulds, such as Aspergillus spp. and Penicillium spp., may produce mycotoxins when conditions are favourable but may be prevented by ensuring a meat surface temperature of -0.5 to 3.0°C, with a relative humidity (RH) of 75-85% and an airflow of 0.2-0.5 m/s for up to 35 days. The main meat spoilage bacteria include Pseudomonas spp., Lactobacillus spp. Enterococcus spp., Weissella spp., Brochothrix spp., Leuconostoc spp., Lactobacillus spp., Shewanella spp. and Clostridium spp. Under current practices, the ageing of meat may have an impact on the load of microbiological hazards and spoilage bacteria as compared to standard fresh meat preparation. Ageing under defined and controlled conditions can achieve the same or lower loads of microbiological hazards and spoilage bacteria than the variable log10 increases predicted during standard fresh meat preparation. An approach was used to establish the conditions of time and temperature that would achieve similar or lower levels of L. monocytogenes and Yersinia enterocolitica (pork only) and lactic acid bacteria (representing spoilage bacteria) as compared to standard fresh meat. Finally, additional control activities were identified that would further assure the microbial safety of dry-aged beef, based on recommended best practice and the outputs of the equivalence assessment.

10.
EFSA J ; 21(7): e08092, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37434788

RESUMO

The qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of microorganisms, intended for use in the food or feed chains, to support the work of EFSA's Scientific Panels. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge and safety concerns. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. In the period covered by this Statement, no new information was found that would change the status of previously recommended QPS TUs. Of 38 microorganisms notified to EFSA between October 2022 and March 2023 (inclusive) (28 as feed additives, 5 as food enzymes, food additives and flavourings, 5 as novel foods), 34 were not evaluated because: 8 were filamentous fungi, 4 were Enterococcus faecium and 2 were Escherichia coli (taxonomic units that are excluded from the QPS evaluation) and 20 were taxonomic units (TUs) that already have a QPS status. Three of the other four TUs notified within this period were evaluated for the first time for a possible QPS status: Anaerobutyricum soehngenii, Stutzerimonas stutzeri (former Pseudomonas stutzeri) and Nannochloropsis oculata. Microorganism strain DSM 11798 has also been notified in 2015 and as its taxonomic unit is notified as a strain not a species, it is not suitable for the QPS approach. A. soehngenii and N. oculata are not recommended for the QPS status due to a limited body of knowledge of its use in the food and feed chains. S. stutzeri is not recommended for inclusion in the QPS list based on safety concerns and limited information about the exposure of animals and humans through the food and feed chains.

11.
EFSA J ; 21(1): e07746, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36704192

RESUMO

The qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of microorganisms, intended for use in the food or feed chains, to support the work of EFSA's Scientific Panels. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge and safety concerns. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. In the period covered by this Statement, new information was found leading to the withdrawal of the qualification 'absence of aminoglycoside production ability' for Bacillus velezensis. The qualification for Bacillus paralicheniformis was changed to 'absence of bacitracin production ability'. For the other TUs, no new information was found that would change the status of previously recommended QPS TUs. Of 52 microorganisms notified to EFSA between April and September 2022 (inclusive), 48 were not evaluated because: 7 were filamentous fungi, 3 were Enterococcus faecium, 2 were Escherichia coli, 1 was Streptomyces spp., and 35 were taxonomic units (TUs) that already have a QPS status. The other four TUs notified within this period, and one notified previously as a different species, which was recently reclassified, were evaluated for the first time for a possible QPS status: Xanthobacter spp. could not be assessed because it was not identified to the species level; Geobacillus thermodenitrificans is recommended for QPS status with the qualification 'absence of toxigenic activity'. Streptoccus oralis is not recommended for QPS status. Ogataea polymorpha is proposed for QPS status with the qualification 'for production purposes only'. Lactiplantibacillus argentoratensis (new species) is included in the QPS list.

12.
EFSA J ; 21(4): e07936, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37077299

RESUMO

The European Commission requested an analysis of the Chronic Wasting Disease (CWD) monitoring programme in Norway, Sweden, Finland, Iceland, Estonia, Latvia, Lithuania and Poland (9 January 2017-28 February 2022). Thirteen cases were detected in reindeer, 15 in moose and 3 in red deer. They showed two phenotypes, distinguished by the presence or absence of detectable disease-associated normal cellular prion protein (PrP) in lymphoreticular tissues. CWD was detected for the first time in Finland, Sweden and in other areas of Norway. In countries where the disease was not detected, the evidence was insufficient to rule out its presence altogether. Where cases were detected, the prevalence was below 1%. The data also suggest that the high-risk target groups for surveillance should be revised, and 'road kill' removed. Data show that, in addition to differences in age and sex, there are differences in the prion protein gene (PRNP) genotypes between positive and negative wild reindeer. A stepwise framework has been proposed with expanded minimum background surveillance to be implemented in European countries with relevant cervid species. Additional surveillance may include ad hoc surveys for four different objectives, specific to countries with/without cases, focusing on parallel testing of obex and lymph nodes from adult cervids in high-risk target groups, sustained over time, using sampling units and a data-driven design prevalence. Criteria for assessing the probability of CWD presence have been outlined, based on the definition of the geographical area, an annual assessment of risk of introduction, sustained minimum background surveillance, training and engagement of stakeholders and a surveillance programme based on data-driven parameters. All positive cases should be genotyped. Sample sizes for negative samples have been proposed to detect and estimate the frequency of PRNP polymorphisms. Double-strand sequencing of the entire PRNP open reading frame should be undertaken for all selected samples, with data collated in a centralised collection system at EU level.

13.
EFSA J ; 21(11): e08332, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37928944

RESUMO

The contamination of water used in post-harvest handling and processing operations of fresh and frozen fruit, vegetables and herbs (ffFVHs) is a global concern. The most relevant microbial hazards associated with this water are: Listeria monocytogenes, Salmonella spp., human pathogenic Escherichia coli and enteric viruses, which have been linked to multiple outbreaks associated with ffFVHs in the European Union (EU). Contamination (i.e. the accumulation of microbiological hazards) of the process water during post-harvest handling and processing operations is affected by several factors including: the type and contamination of the FVHs being processed, duration of the operation and transfer of microorganisms from the product to the water and vice versa, etc. For food business operators (FBOp), it is important to maintain the microbiological quality of the process water to assure the safety of ffFVHs. Good manufacturing practices (GMP) and good hygienic practices (GHP) related to a water management plan and the implementation of a water management system are critical to maintain the microbiological quality of the process water. Identified hygienic practices include technical maintenance of infrastructure, training of staff and cooling of post-harvest process water. Intervention strategies (e.g. use of water disinfection treatments and water replenishment) have been suggested to maintain the microbiological quality of process water. Chlorine-based disinfectants and peroxyacetic acid have been reported as common water disinfection treatments. However, given current practices in the EU, evidence of their efficacy under industrial conditions is only available for chlorine-based disinfectants. The use of water disinfection treatments must be undertaken following an appropriate water management strategy including validation, operational monitoring and verification. During operational monitoring, real-time information on process parameters related to the process and product, as well as the water and water disinfection treatment(s) are necessary. More specific guidance for FBOp on the validation, operational monitoring and verification is needed.

14.
EFSA J ; 21(10): e08323, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37915981

RESUMO

The qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of microorganisms intended for use in the food or feed chains. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications' which should be assessed at strain and/or product level by EFSA's Scientific Panels. The generic qualification 'the strains should not harbour any acquired antimicrobial resistance (AMR) genes to clinically relevant antimicrobials' applies to all QPS bacterial TUs. The different EFSA risk assessment areas use the same approach to assess the qualification related to AMR genes. In this statement, the terms 'intrinsic' and 'acquired' AMR genes were defined for the purpose of EFSA's risk assessments, and they apply to bacteria used in the food and feed chains. A bioinformatic approach is proposed for demonstrating the 'intrinsic'/'acquired' nature of an AMR gene. All AMR genes that confer resistance towards 'critically important', 'highly important' and 'important' antimicrobials, as defined by the World Health Organisation (WHO), found as hits, need to be considered as hazards (for humans, animals and environment) and need further assessment. Genes identified as responsible for 'intrinsic' resistance could be considered as being of no concern in the frame of the EFSA risk assessment. 'Acquired' AMR genes resulting in a resistant phenotype should be considered as a concern. If the presence of the 'acquired' AMR gene is not leading to phenotypic resistance, further case-by-case assessment is necessary.

15.
EFSA J ; 21(7): e08093, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37416785

RESUMO

An assessment was conducted on the level of inactivation of relevant pathogens that could be present in processed animal protein of porcine origin intended to feed poultry and aquaculture animals when methods 2 to 5 and method 7, as detailed in Regulation (EU) No 142/2011, are applied. Five approved scenarios were selected for method 7. Salmonella Senftenberg, Enterococcus faecalis, spores of Clostridium perfringens and parvoviruses were shortlisted as target indicators. Inactivation parameters for these indicators were extracted from extensive literature search and a recent EFSA scientific opinion. An adapted Bigelow model was fitted to retrieved data to estimate the probability that methods 2 to 5, in coincidental and consecutive modes, and the five scenarios of method 7 are able to achieve a 5 log10 and a 3 log10 reduction of bacterial indicators and parvoviruses, respectively. Spores of C. perfringens were the indicator with the lowest probability of achieving the target reduction by methods 2 to 5, in coincidental and consecutive mode, and by the five considered scenarios of method 7. An expert knowledge elicitation was conducted to estimate the certainty of achieving a 5 log10 reduction of spores of C. perfringens considering the results of the model and additional evidence. A 5 log10 reduction of C. perfringens spores was judged: 99-100% certain for methods 2 and 3 in coincidental mode; 98-100% certain for method 7 scenario 3; 80-99% certain for method 5 in coincidental mode; 66-100% certain for method 4 in coincidental mode and for method 7 scenarios 4 and 5; 25-75% certain for method 7 scenario 2; and 0-5% certain for method 7 scenario 1. Higher certainty is expected for methods 2 to 5 in consecutive mode compared to coincidental mode.

16.
Scand J Public Health ; 40(3): 294-302, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22312030

RESUMO

AIMS: To estimate disability-adjusted life years (DALY) and cost of illness (COI) associated with the gastrointestinal bacterial pathogens Campylobacter and verocytotoxin-producing Escherichia coli (VTEC) in Sweden and to investigate the impact of variability in health outcomes, data availability, and different assumptions about underreporting on DALY. METHODS: Data from the Swedish notification system, public databases, and the literature were used to estimate COI and DALY. DALY was modelled using a deterministic and a stochastic approach, the latter describing variation in health outcomes between individuals. Effects of different assumptions about underreporting of gastroenteritis were evaluated in separate scenarios. RESULTS: COI and DALY were greater for Campylobacter than for VTEC. Years of life lost due to haemolytic uraemic syndrome and years lived with gastroenteritis constituted most of DALY for VTEC and Campylobacter, respectively. Productivity losses due to gastroenteritis constituted the main cost associated with both pathogens. Degree of underreporting had a greater impact on DALY for Campylobacter, due to higher estimated incidence of gastroenteritis associated with campylobacteriosis. CONCLUSIONS: Pathogen-specific health outcomes and data quality may influence the preferred modelling approach. There was a fair agreement between modelling approaches, but the stochastic model reflected the contribution of some rare health outcomes not captured in the deterministic model. Health outcomes excluded due to lack of data lead to an underestimation of the total burden associated with the pathogens. Increased knowledge, especially on the degree of underreporting and the contribution of the pathogens to sequelae, is needed to further improve public health burden estimates for these pathogens in Sweden.


Assuntos
Infecções por Campylobacter/complicações , Efeitos Psicossociais da Doença , Infecções por Escherichia coli/complicações , Anos de Vida Ajustados por Qualidade de Vida , Escherichia coli Shiga Toxigênica , Infecções por Campylobacter/economia , Infecções por Escherichia coli/economia , Humanos , Saúde Pública , Suécia
17.
Int J Food Microbiol ; 378: 109823, 2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-35792470

RESUMO

Thermophilic Campylobacter species are the most common cause of bacterial gastroenteritis worldwide, and handling and consumption of broiler meat is considered a major foodborne transmission route. Both the incidence of campylobacteriosis and the prevalence of Campylobacter in broilers show seasonality but the impact of this association and broiler prevalence on human incidence is not clear. To explore this relationship we applied two approaches for analyzing time series data using different time resolutions (weekly, bi-weekly or monthly data) of human campylobacteriosis cases and prevalence of Campylobacter spp. in broiler slaughter batches in Sweden between 2009 and 2019. The decomposition of time series into seasonal (S), long-term trend (T) and residual components (STL model) showed a close overlap in seasonal patterns in terms of timing and the proportional change of peaks from normalized yearly levels. Starting 2016, when a large outbreak was reported, there was significant overlap in the trend components as well. The trend component of human cases prior to the outbreak corresponded to a linear increase of 6.5 % cases annually. In comparison, the estimated annual increase in broiler consumption was 2.7 %. An additive approach for time-series counts incorporating seasonal and epidemic (cases are a function of previous cases) components found a positive association between human cases and broiler prevalence with an optimal lag of 2 weeks, 1 bi-week, or 0 months. Considering the estimated time between slaughter and consumption, incubation time, and the time between on-set of disease and testing, a 2-week lag may be consistent with transmission via handling and consumption of fresh broiler meat. The best model included broiler prevalence as a factor in the epidemic model component, not in the seasonal component. The outcomes in terms of best model, optimal lags and significance of parameters, using weekly, bi-weekly or monthly data were, in general, in agreement but varied with data resolution when only a subset of the time series, not including any known broiler associated outbreaks, was analyzed. The optimal resolution based on the available data and conditions of the present analysis appeared to be weekly or bi-weekly data. Results suggest that broiler prevalence with a 2 week lag period can explain part of the human cases but has a smaller explanatory impact during the part of the study period not including the large known outbreaks. There is no simple relationship between broiler prevalence and human cases. Additional factors than broiler prevalence need to be evaluated in order to understand the transmission routes and epidemiology of campylobacteriosis.


Assuntos
Infecções por Campylobacter , Campylobacter , Gastroenterite , Doenças das Aves Domésticas , Animais , Infecções por Campylobacter/epidemiologia , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/veterinária , Galinhas/microbiologia , Humanos , Doenças das Aves Domésticas/microbiologia , Prevalência , Suécia/epidemiologia
18.
EFSA J ; 20(11): e07591, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36381127

RESUMO

An alternative method for the production of renewable fuels from rendered animal fats (pretreated using methods 1-5 or method 7 as described in Annex IV of Commission Regulation (EC) No 2011/142) and used cooking oils, derived from Category 3 animal by-products, was assessed. The method is based on a catalytic co-processing hydrotreatment using a middle distillate followed by a stripping step. The materials must be submitted to a pressure of at least 60 bars and a temperature of at least 270°C for at least 4.7 min. The application focuses on the demonstration of the level of reduction of spores from non-pathogenic spore-forming indicator bacterial species (Bacillus subtilis and Desulfotomaculum kuznetsovii), based on a non-systematic review of published data and additional extrapolation analyses. The EFSA BIOHAZ Panel considers that the application and supporting literature contain sufficient evidence that the proposed alternative method can achieve a reduction of at least 5 log10 in the spores of B. subtilis and a 12 log10 reduction in the spores of C. botulinum. The alternative method under evaluation is considered at least equivalent to the processing methods currently approved in the Commission Regulation (EU) No 2011/142.

19.
EFSA J ; 20(7): e07408, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35898292

RESUMO

The qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of microorganisms, intended for use in the food or feed chains, to support the work of EFSA's Scientific Panels. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge, safety concerns and occurrence of antimicrobial resistance. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. In the period covered by this statement, no new information was found that would change the status of previously recommended QPS TUs. Of the 50 microorganisms notified to EFSA in October 2021 to March 2022 (inclusive), 41 were not evaluated: 10 filamentous fungi, 1 Enterococcus faecium, 1 Clostridium butyricum, 3 Escherichia coli and 1 Streptomyces spp. because are excluded from QPS evaluation, and 25 TUs that have already a QPS status. Nine notifications, corresponding to seven TUs were evaluated: four of these, Streptococcus salivarius, Companilactobacillus formosensis, Pseudonocardia autotrophica and Papiliotrema terrestris, being evaluated for the first time. The other three, Microbacterium foliorum, Pseudomonas fluorescens and Ensifer adhaerens were re-assessed. None of these TUs were recommended for QPS status: Ensifer adhaerens, Microbacterium foliorum, Companilactobacillus formosensis and Papiliotrema terrestris due to a limited body of knowledge, Streptococcus salivarius due to its ability to cause bacteraemia and systemic infection that results in a variety of morbidities, Pseudonocardia autotrophica due to lack of body of knowledge and uncertainty on the safety of biologically active compounds which can be produced, and Pseudomonas fluorescens due to possible safety concerns.

20.
EFSA J ; 20(1): e07045, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35126735

RESUMO

The qualified presumption of safety (QPS) approach was developed to provide a generic pre-evaluation of the safety of biological agents. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge and safety concerns. Safety concerns are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. The QPS list was updated in relation to the revised taxonomy of the genus Bacillus, to synonyms of yeast species and for the qualifications 'absence of resistance to antimycotics' and 'only for production purposes'. Lactobacillus cellobiosus has been reclassified as Limosilactobacillus fermentum. In the period covered by this statement, no new information was found that would change the status of previously recommended QPS taxonomic units (TU)s. Of the 70 microorganisms notified to EFSA, 64 were not evaluated: 11 filamentous fungi, one oomycete, one Clostridium butyricum, one Enterococcus faecium, five Escherichia coli, one Streptomyces sp., one Bacillus nakamurai and 43 TUs that already had a QPS status. Six notifications, corresponding to six TUs were evaluated: Paenibacillus lentus was reassessed because an update was requested for the current mandate. Enterococcus lactis synonym Enterococcus xinjiangensis, Aurantiochytrium mangrovei synonym Schizochytrium mangrovei, Schizochytrium aggregatum, Chlamydomonas reinhardtii synonym Chlamydomonas smithii and Haematococcus lacustris synonym Haematococcus pluvialis were assessed for the first time. The following TUs were not recommended for QPS status: P. lentus due to a limited body of knowledge, E. lactis synonym E. xinjiangensis due to potential safety concerns, A. mangrovei synonym S. mangrovei, S. aggregatum and C. reinhardtii synonym C. smithii, due to lack of a body of knowledge on its occurrence in the food and feed chain. H. lacustris synonym H. pluvialis is recommended for QPS status with the qualification 'for production purposes only'.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA