Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(15): 12133-12141, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38587498

RESUMO

Highly efficient nano piezoelectric devices and nanomedical sensors are in great demand for high-performance piezoelectric materials. In this work, we propose new asymmetric XMoGeY2 (X = S, Se, Te; Y = N, P, As) monolayers with excellent piezoelectric properties, dynamic stability and flexible elastic properties. The piezoelectric coefficients (d11) of XMoGeY2 monolayers range from 2.92 to 8.19 pm V-1. Among them, TeMoGeAs2 exhibits the highest piezoelectric coefficient (d11 = 8.19 pm V-1), which is 2.2 times higher than that of common 2D piezoelectric materials such as 2H-MoS2 (d11 = 3.73 pm V-1). Furthermore, all XMoGeY2 monolayers demonstrate flexible elastic properties ranging from 96.23 to 253.70 N m-1. Notably, TeMoGeAs2 has a Young's modulus of 96.23 N m-1, which is only one-third of that of graphene (336 N m-1). The significant piezoelectric coefficients of XMoGeY2 monolayers can be attributed to their asymmetric structures and flexible elastic properties. This study provides valuable insights into the potential applications of XMoGeY2 monolayers in nano piezoelectric devices and nanomedical sensors.

2.
Phys Chem Chem Phys ; 25(38): 26043-26048, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37727022

RESUMO

An ideal catalyst should have a relative hydrogen adsorption Gibbs free energy (ΔGH) close to zero [J. K. Nørskov, et al., J. Electrochem. Soc., 2005, 152, J23]. However, most of the known catalysts cannot reach this standard. Based on first-principles calculations, we studied the hydrogen evolution reaction (HER) catalytic performance of pristine and defect (including vacancy and heteroatom doping) structures in terms of its ΔGH. We found that the ΔGH values of Co-doped HfS2 and P-doped HfSe2 are extremely close to zero, even closer than that of Pt (111), indicating that they are excellent catalysts. Moreover, we found that the source of the HER catalytic performance of Co-doped HfS2 is the reduction of electron accumulation of the active site S atom. Our work provides two potential ideal catalysts and provides guidance for the experimental group to search for suitable catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA