Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gene Ther ; 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39183346

RESUMO

Mutation-agnostic treatments such as airway gene therapy have the potential to treat any individual with cystic fibrosis (CF), irrespective of their CF transmembrane conductance regulator (CFTR) gene variants. The aim of this study was to employ two CF rat models, Phe508del and CFTR knockout (KO), to assess the comparative effectiveness of CFTR modulators and lentiviral (LV) vector-mediated gene therapy. Cells were isolated from the tracheas of rats and used to establish air-liquid interface (ALI) cultures. Phe508del rat ALIs were treated with the modulator combination, elexacaftor-tezacaftor-ivacaftor (ETI), and separate groups of Phe508del and KO tracheal epithelial cells were treated with LV-CFTR followed by differentiation at ALI. Ussing chamber measurements were performed to assess CFTR function. ETI-treated Phe508del ALI cultures demonstrated CFTR function that was 59% of wild-type level, while gene-addition therapy restored Phe508del to 68% and KO to 47% of wild-type level, respectively. Our findings show that rat Phe508del-CFTR protein can be successfully rescued with ETI treatment, and that CFTR gene-addition therapy provides significant CFTR correction in Phe508del and KO ALI cultures to levels that were comparable to ETI. These findings highlight the potential of an LV vector-based gene therapy for the treatment of CF lung disease.

2.
J Allergy Clin Immunol ; 145(6): 1562-1573, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32113981

RESUMO

BACKGROUND: Emerging evidence suggests that disease vulnerability is expressed throughout the airways, the so-called unified airway hypothesis, but the evidence to support this is predominantly indirect. OBJECTIVES: We sought to establish the transcriptomic profiles of the upper and lower airways and determine their level of similarity irrespective of airway symptoms (wheeze) and allergy. METHODS: We performed RNA sequencing on upper and lower airway epithelial cells from 63 children with or without wheeze and accompanying atopy, using differential gene expression and gene coexpression analyses to determine transcriptional similarity. RESULTS: We observed approximately 91% homology in the expressed genes between the 2 sites. When coexpressed genes were grouped into modules relating to biological functions, all were found to be conserved between the 2 regions, resulting in a consensus network containing 16 modules associated with ribosomal function, metabolism, gene expression, mitochondrial activity, and antiviral responses through IFN activity. Although symptom-associated gene expression changes were more prominent in the lower airway, they were reflected in nasal epithelium and included IL-1 receptor like 1, prostaglandin-endoperoxide synthase 1, CCL26, and periostin. Through network analysis we identified a cluster of coexpressed genes associated with atopic wheeze in the lower airway, which could equally distinguish atopic and nonatopic phenotypes in upper airway samples. CONCLUSIONS: We show that the upper and lower airways are significantly conserved in their transcriptional composition, and that variations associated with disease are present in both nasal and tracheal epithelium. Findings from this study supporting a unified airway imply that clinical insight regarding the lower airway in health and disease can be gained from studying the nasal epithelium.


Assuntos
Células Epiteliais/metabolismo , Mucosa Respiratória/metabolismo , Sistema Respiratório/metabolismo , Transcriptoma/genética , Adolescente , Moléculas de Adesão Celular/genética , Quimiocina CCL26/genética , Criança , Pré-Escolar , Ciclo-Oxigenase 1/genética , Feminino , Humanos , Hipersensibilidade/genética , Masculino , Receptores Tipo I de Interleucina-1/genética , Sons Respiratórios/genética
3.
Respirology ; 24(12): 1212-1219, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30989728

RESUMO

BACKGROUND AND OBJECTIVE: Human rhinovirus (RV) is a common upper and lower respiratory pathogen in lung allograft recipients causing respiratory tract exacerbation and contributing towards allograft dysfunction and long-term lung decline. In this study, we tested the hypothesis that RV could infect both the small and large airways, resulting in significant inflammation. METHODS: Matched large and small airway epithelial cells (AEC) were obtained from five lung allograft recipients. Primary cultures were established, and monolayers were infected with RV1b over time with varying viral titre. Cell viability, receptor expression, viral copy number, apoptotic induction and inflammatory cytokine production were also assessed at each region. Finally, the effect of azithromycin on viral replication, induction of apoptosis and inflammation was investigated. RESULTS: RV infection caused significant cytotoxicity in both large AEC (LAEC) and small AEC (SAEC), and induced a similar apoptotic response in both regions. There was a significant increase in receptor expression in the LAEC only post viral infection. Viral replication was elevated in both LAEC and SAEC, but was not significantly different. Prophylactic treatment of azithromycin reduced viral replication and dampened the production of inflammatory cytokines post-infection. CONCLUSION: Our data illustrate that RV infection is capable of infecting upper and lower AEC, driving cell death and inflammation. Prophylactic treatment with azithromycin was found to mitigate some of the detrimental responses. Findings provide further support for the prophylactic prescription of azithromycin to minimize the impact of RV infection.


Assuntos
Células Epiteliais Alveolares , Azitromicina/farmacologia , Infecções por Picornaviridae , Infecções Respiratórias , Rhinovirus , Antibacterianos/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/análise , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Transplante de Pulmão/efeitos adversos , Infecções por Picornaviridae/tratamento farmacológico , Infecções por Picornaviridae/imunologia , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia , Rhinovirus/patogenicidade , Rhinovirus/fisiologia , Replicação Viral/efeitos dos fármacos
4.
Biol Proced Online ; 20: 3, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29434527

RESUMO

BACKGROUND: Apically located tight junctions in airway epithelium perform a fundamental role in controlling macromolecule migration through paracellular spaces. Alterations in their expression may lead to disruptions in barrier integrity, which subsequently facilitates entry of potential bacterial and other pathogens into the host. Furthermore, there is emerging evidence that the barrier integrity of the airway in certain airway inflammatory diseases may be altered. However, there is little consensus on the way this is assessed and measured and the type of cells used to achieve this. METHODS: Here, we assessed four fixation methods including; (i) 4% (v/v) paraformaldehyde; (ii) 100% methanol; (iii) acetone or; (iv) 1:1 methanol: acetone. Pre-extraction with Triton X-100 was also performed and assessed on cells prior to fixation with either methanol or paraformaldehyde. Cells were also permeabilized with 0.1% (v/v) Saponin in 1× TBS following fixation and subsequently stained for tight junction proteins. Confocal microscopy was then used to visualise, compare and evaluate staining intensity of the tight junctional complexes in order to determine a standardised workflow of reproducible staining. RESULTS: Positive staining was observed following methanol fixation for claudin-1 and ZO-1 tight junction proteins but no staining was detected for occludin in 16HBE14o- cells. Combinatorial fixation with methanol and acetone also produced consistent positive staining for both occludin and ZO-1 tight junction proteins in these cells. When assessed using primary cells cultured at air-liquid interface, similar positive staining for claudin-1 and ZO-1 was observed following methanol fixation, while similar positive staining for occludin and ZO-1 was observed following the same combinatorial fixation with methanol and acetone. CONCLUSIONS: The present study demonstrates the importance of a personalised approach to optimise staining for the visualisation of different tight junction proteins. Of significance, the workflow, once optimised, can readily be translated into primary airway epithelial cell air-liquid interface cultures where it can be used to assess barrier integrity in chronic lung diseases.

5.
Am J Respir Cell Mol Biol ; 54(3): 341-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26221769

RESUMO

Neutrophil elastase (NE) activity is associated with many destructive lung diseases and is a predictor for structural lung damage in early cystic fibrosis (CF), which suggests normal maintenance of airway epithelium is prevented by uninhibited NE. However, limited data exist on how the NE activity in airways of very young children with CF affects function of the epithelia. The aim of this study was to determine if NE activity could inhibit epithelial homeostasis and repair and whether any functional effect was reversible by antiprotease alpha-1 antitrypsin (α1AT) treatment. Viability, inflammation, apoptosis, and proliferation were assessed in healthy non-CF and CF pediatric primary airway epithelial cells (pAECnon-CF and pAECCF, respectively) during exposure to physiologically relevant NE. The effect of NE activity on pAECCF wound repair was also assessed. We report that viability after 48 hours was significantly decreased by 100 nM NE in pAECnon-CF and pAECCF owing to rapid cellular detachment that was accompanied by inflammatory cytokine release. Furthermore, both phenotypes initiated an apoptotic response to 100 nM NE, whereas ≥ 50 nM NE activity significantly inhibited the proliferative capacity of cultures. Similar concentrations of NE also significantly inhibited wound repair of pAECCF, but this effect was reversed by the addition of α1AT. Collectively, our results demonstrate free NE activity is deleterious for epithelial homeostasis and support the hypothesis that proteases in the airway contribute directly to CF structural lung disease. Our results also highlight the need to investigate antiprotease therapies in early CF disease in more detail.


Assuntos
Fibrose Cística/enzimologia , Células Epiteliais/efeitos dos fármacos , Elastase de Leucócito/farmacologia , Regeneração/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , alfa 1-Antitripsina/farmacologia , Apoptose/efeitos dos fármacos , Estudos de Casos e Controles , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Criança , Pré-Escolar , Fibrose Cística/patologia , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Feminino , Humanos , Lactente , Recém-Nascido , Mediadores da Inflamação/metabolismo , Masculino , Fenótipo , Mucosa Respiratória/enzimologia , Mucosa Respiratória/patologia , Fatores de Tempo
6.
Exp Lung Res ; 42(7): 380-395, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27726456

RESUMO

RATIONALE: No studies have assessed the effects of human rhinovirus (HRV) infection on epithelial tight junctions (TJs) and resultant barrier function. AIM OF THE STUDY: To correlate viral infection with TJ disassembly, epithelial barrier integrity, and function. MATERIALS AND METHODS: Human airway epithelial cells were infected with HRV minor serotype 1B (HRV-1B) at various 50% tissue culture infectivity doses (TCID50) over 72 hours. HRV replication was assessed by quantitative-polymerase chain reaction (qPCR) while cell viability and apoptosis were assessed by proliferation and apoptotic assays, respectively. Protein expression of claudin-1, occludin, and zonula occludens protein-1 (ZO-1) was assessed using In-Cell™ Western assays. Transepithelial permeability assays were performed to assess effects on barrier functionality. RT2 Profiler focused qPCR arrays and pathway analysis evaluating associations between human TJ and antiviral response were performed to identify potential interactions and pathways between genes of interests. RESULTS: HRV-1B infection affected viability that was both time and TCID50 dependent. Significant increases in apoptosis and viral replication post-infection correlated with viral titer. Viral infection significantly decreased claudin-1 protein expression at the lower TCID50, while a significant decrease in all three TJ protein expressions occurred at higher TCID50. Decrease in protein expression was concomitant with significant increases in epithelial permeability of fluorescein isothiocynate labeled-dextran 4 and 20 kDa. Analysis of focused qPCR arrays demonstrated a significant decrease in ZO-1 gene expression. Furthermore, network analysis between human TJ and antiviral response genes revealed possible interactions and regulation of TJ genes via interleukin (IL)-15 in response to HRV-1B infection. CONCLUSION: HRV-1B infection directly alters human airway epithelial TJ expression leading to increased epithelial permeability potentially via an antiviral response of IL-15.

7.
Respirology ; 21(7): 1219-26, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27221564

RESUMO

BACKGROUND AND OBJECTIVE: Evidence into the role of TGF-ß1 in airway epithelial repair in asthma is still controversial. This study tested the hypothesis that the reduced TGF-ß1 levels previously observed in paediatric asthmatic airway epithelial cells directly contribute to the dysregulated repair seen in these cells. METHODS: Primary airway epithelial cells (pAEC) from children with asthma (n = 16) and non-asthmatic subjects (n = 20) were isolated, and subcultured for investigation of TGF-ß1 gene and protein via quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Expression of other associated genes such as integrins αvß6, αvß8 and MT1-MMP were also tested. Small interfering RNA (siRNA) was employed to assess the role of TGF-ß1 during wound repair. RESULTS: TGF-ß1 gene and protein expression were significantly downregulated in asthmatic pAEC over the course of repair, compared with cells from non-asthmatic children. Messenger RNA (mRNA) expression of TGF-ß1 was also directly implicated in non-asthmatic and asthmatic pAEC proliferation over their quiescent counterparts. Small interfering RNA-mediated knockdown of TGF-ß1 compromised repair in non-asthmatic pAEC and exacerbated the dysregulated repair seen in asthmatic pAEC. Expression of major TGF-ß1 activators of epithelial cells, integrin αvß6 and αvß8 was also measured and there was no difference in αvß6 gene expression between the two cohorts. Although integrin αvß8 gene expression was significantly higher in asthmatic pAEC, the expression of MT1-MMP (MMP14) which facilitates the αvß8 mediated TGF-ß1 activation was significantly downregulated. CONCLUSION: Our data has highlighted the importance of TGF-ß1 in pAEC wound repair in vitro. The significantly lower levels seen in asthmatic pAEC subsequently contributes to the dysregulated repair observed in these cells.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Células Epiteliais Alveolares/metabolismo , Asma , Fator de Crescimento Transformador beta1/metabolismo , Células Epiteliais Alveolares/patologia , Asma/metabolismo , Asma/patologia , Proliferação de Células , Criança , Feminino , Humanos , Masculino , Metaloproteinase 14 da Matriz/metabolismo , RNA Mensageiro/metabolismo , Reepitelização/fisiologia , Estatística como Assunto
8.
Environ Toxicol ; 31(1): 44-57, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25045158

RESUMO

Increasing use of biodiesel has prompted research into the potential health effects of biodiesel exhaust exposure. Few studies directly compare the health consequences of mineral diesel, biodiesel, or blend exhaust exposures. Here, we exposed human epithelial cell cultures to diluted exhaust generated by the combustion of Australian ultralow-sulfur-diesel (ULSD), unprocessed canola oil, 100% canola biodiesel (B100), and a blend of 20% canola biodiesel mixed with 80% ULSD. The physicochemical characteristics of the exhaust were assessed and we compared cellular viability, apoptosis, and levels of interleukin (IL)-6, IL-8, and Regulated on Activation, Normal T cell Expressed and Secreted (RANTES) in exposed cultured cells. Different fuel types produced significantly different amounts of exhaust gases and different particle characteristics. All exposures resulted in significant apoptosis and loss of viability when compared with control, with an increasing proportion of biodiesel being correlated with a decrease in viability. In most cases, exposure to exhaust resulted in an increase in mediator production, with the greatest increases most often in response to B100. Exposure to pure canola oil (PCO) exhaust did not increase mediator production, but resulted in a significant decrease in IL-8 and RANTES in some cases. Our results show that canola biodiesel exhaust exposure elicits inflammation and reduces viability of human epithelial cell cultures in vitro when compared with ULSD exhaust exposure. This may be related to an increase in particle surface area and number in B100 exhaust when compared with ULSD exhaust. Exposure to PCO exhaust elicited the greatest loss of cellular viability, but virtually no inflammatory response, likely due to an overall increase in average particle size.


Assuntos
Apoptose/efeitos dos fármacos , Biocombustíveis/análise , Mediadores da Inflamação/metabolismo , Emissões de Veículos/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CCL5/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Modelos Lineares , Tamanho da Partícula , Material Particulado/química , Material Particulado/toxicidade
9.
Eur Respir J ; 46(2): 384-94, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25929954

RESUMO

Neutrophil elastase is the most significant predictor of bronchiectasis in early-life cystic fibrosis; however, the causal link between neutrophil elastase and airway damage is not well understood. Matrix metalloproteinases (MMPs) play a crucial role in extracellular matrix modelling and are activated by neutrophil elastase. The aim of this study was to assess if MMP activation positively correlates with neutrophil elastase activity, disease severity and bronchiectasis in young children with cystic fibrosis.Total MMP-1, MMP-2, MMP-7, MMP-9, tissue inhibitor of metalloproteinase (TIMP)-2 and TIMP-1 levels were measured in bronchoalveolar lavage fluid collected from young children with cystic fibrosis during annual clinical assessment. Active/pro-enzyme ratio of MMP-9 was determined by gelatin zymography. Annual chest computed tomography imaging was scored for bronchiectasis.A higher MMP-9/TIMP-1 ratio was associated with free neutrophil elastase activity. In contrast, MMP-2/TIMP-2 ratio decreased and MMP-1 and MMP-7 were not detected in the majority of samples. Ratio of active/pro-enzyme MMP-9 was also higher in the presence of free neutrophil elastase activity, but not infection. Across the study cohort, both MMP-9/TIMP-1 and active MMP-9 were associated with progression of bronchiectasis.Both MMP-9/TIMP-1 and active MMP-9 increased with free neutrophil elastase and were associated with bronchiectasis, further demonstrating that free neutrophil elastase activity should be considered an important precursor to cystic fibrosis structural disease.


Assuntos
Bronquiectasia/enzimologia , Fibrose Cística/complicações , Elastase de Leucócito/metabolismo , Metaloproteinases da Matriz/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Bronquiectasia/complicações , Líquido da Lavagem Broncoalveolar/química , Criança , Pré-Escolar , Fibrose Cística/enzimologia , Progressão da Doença , Feminino , Humanos , Lactente , Masculino , Tomografia Computadorizada por Raios X
10.
Exp Lung Res ; 40(9): 447-59, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25191759

RESUMO

AIM OF THE STUDY: The bronchial brushing technique presents an opportunity to establish a gold standard in vitro model of Cystic Fibrosis (CF) airway disease. However, unique obstacles exist when establishing CF airway epithelial cells (pAECCF). We aimed to identify determinants of culture success through retrospective analysis of a program of routinely brushing children with CF. MATERIALS AND METHODS: Anaesthetised children (CF and non-CF) had airway samples taken which were immediately processed for cell culture. Airway data for the CF cohort was obtained from clinical records and the AREST CF database. RESULTS: Of 260 brushings processed for culture, 114 (43.8%) pAECCF successfully cultured to passage one (P1) and 63 (24.2% of total) progressed to passage two (P2). However, >80% of non-CF specimens (pAECnon-CF) cultured to P2 from similar cell numbers. Within the CF cohort, specimens successfully cultured to P2 had a higher initial cell count and lower proportion of severe CF mutation phenotype than those that did not proliferate beyond initial seeding. Elevated airway IL-8 concentration was also negatively associated with culture establishment. Contamination by opportunistic pathogens was observed in 81 (31.2% of total) cultures and brushings from children with lower respiratory tract infections were more likely to co-culture contaminating flora. CONCLUSIONS: Lower passage rates of pAECCF cultures uniquely contrasts with pAECnon-CF despite similar cell numbers. An equivalent establishment rate of CF nasal epithelium reported elsewhere, significant associations to CFTR mutation phenotype, elevated airway IL-8 and opportunistic pathogens all suggest this is likely related to the CF disease milieu.


Assuntos
Técnicas de Cultura de Células/estatística & dados numéricos , Fibrose Cística/patologia , Mucosa Respiratória/patologia , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/microbiologia , Criança , Pré-Escolar , Fibrose Cística/enzimologia , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Técnicas Citológicas , Feminino , Humanos , Lactente , Inflamação/enzimologia , Interleucina-8/metabolismo , Elastase de Leucócito/metabolismo , Masculino , Mutação , Estudos Retrospectivos , Manejo de Espécimes
11.
Front Microbiol ; 15: 1476041, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39493847

RESUMO

Burkholderia cepacia complex is a cause of serious lung infections in people with cystic fibrosis, exhibiting extremely high levels of antimicrobial resistance. These infections are difficult to treat and are associated with high morbidity and mortality. With a notable lack of new antibiotic classes currently in development, exploring alternative antimicrobial strategies for Burkholderia cepacia complex is crucial. One potential alternative seeing renewed interest is the use of bacteriophage (phage) therapy. This review summarises what is currently known about Burkholderia cepacia complex in cystic fibrosis, as well as challenges and insights for using phages to treat Burkholderia cepacia complex lung infections.

12.
Front Med (Lausanne) ; 10: 1088494, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37265479

RESUMO

For those born with cystic fibrosis (CF), hyper-concentrated mucus with a dysfunctional structure significantly impacts CF airways, providing a perfect environment for bacterial colonization and subsequent chronic infection. Early treatment with antibiotics limits the prevalence of bacterial pathogens but permanently alters the CF airway microenvironment, resulting in antibiotic resistance and other long-term consequences. With little investment into new traditional antibiotics, safe and effective alternative therapeutic options are urgently needed. One gathering significant traction is bacteriophage (phage) therapy. However, little is known about which phages are effective for respiratory infections, the dynamics involved between phage(s) and the host airway, and associated by-products, including mucus. Work utilizing gut cell models suggest that phages adhere to mucus components, reducing microbial colonization and providing non-host-derived immune protection. Thus, phages retained in the CF mucus layer result from the positive selection that enables them to remain in the mucus layer. Phages bind weakly to mucus components, slowing down the diffusion motion and increasing their chance of encountering bacterial species for subsequent infection. Adherence of phage to mucus could also facilitate phage enrichment and persistence within the microenvironment, resulting in a potent phage phenotype or vice versa. However, how the CF microenvironment responds to phage and impacts phage functionality remains unknown. This review discusses CF associated lung diseases, the impact of CF mucus, and chronic bacterial infection. It then discusses the therapeutic potential of phages, their dynamic relationship with mucus and whether this may enhance or hinder airway bacterial infections in CF.

13.
Respirology ; 16(5): 725-37, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21624002

RESUMO

Asthma is the commonest medical cause for hospital admission for children in Australia, affects more than 300 million people worldwide, and is incurable, severe in large number and refractory to treatment in many. However, there have been no new significant treatments despite intense research and billions of dollars. The advancement in our understanding in this disease has been limited due to its heterogeneity, genetic complexity and has severely been hampered particularly in children by the difficulty in obtaining relevant target organ tissue. This review attempts to provide an overview of the currently used and recently developed/adapted techniques used to obtain lung tissue with specific reference to the airway epithelium.


Assuntos
Remodelação das Vias Aéreas , Asma/patologia , Brônquios/patologia , Broncoscopia/métodos , Asma/diagnóstico , Austrália , Biópsia , Lavagem Broncoalveolar , Células Epiteliais/patologia , Humanos
14.
Pathogens ; 10(8)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34451484

RESUMO

Aspergillus is increasingly associated with lung inflammation and mucus plugging in early cystic fibrosis (CF) disease during which conidia burden is low and strains appear to be highly diverse. It is unknown whether clinical Aspergillus strains vary in their capacity to induce epithelial inflammation and mucus production. We tested the hypothesis that individual colonising strains of Aspergillus fumigatus would induce different responses. Ten paediatric CF Aspergillus isolates were compared along with two systemically invasive clinical isolates and an ATCC reference strain. Isolates were first characterised by ITS gene sequencing and screened for antifungal susceptibility. Three clusters (A-C) of Aspergillus isolates were identified by ITS. Antifungal susceptibility was variable, particularly for itraconazole. Submerged CF and non-CF monolayers as well as differentiated primary airway epithelial cell cultures were incubated with conidia for 24 h to allow germination. None of the clinical isolates were found to significantly differ from one another in either IL-6 or IL-8 release or gene expression of secretory mucins. Clinical Aspergillus isolates appear to be largely homogenous in their mucostimulatory and immunostimulatory capacities and, therefore, only the antifungal resistance characteristics are likely to be clinically important.

15.
J Pers Med ; 11(12)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34945795

RESUMO

The airway epithelium of children with wheeze is characterized by defective repair that contributes to disease pathobiology. Dysregulation of developmental processes controlled by Notch has been identified in chronic asthma. However, its role in airway epithelial cells of young children with wheeze, particularly during repair, is yet to be determined. We hypothesized that Notch is dysregulated in primary airway epithelial cells (pAEC) of children with wheeze contributing to defective repair. This study investigated transcriptional and protein expression and function of Notch in pAEC isolated from children with and without wheeze. Primary AEC of children with and without wheeze were found to express all known Notch receptors and ligands, although pAEC from children with wheeze expressed significantly lower NOTCH2 (10-fold, p = 0.004) and higher JAG1 (3.5-fold, p = 0.002) mRNA levels. These dysregulations were maintained in vitro and cultures from children with wheeze displayed altered kinetics of both NOTCH2 and JAG1 expression during repair. Following Notch signaling inhibition, pAEC from children without wheeze failed to repair (wound closure rate of 76.9 ± 3.2%). Overexpression of NOTCH2 in pAEC from children with wheeze failed to rescue epithelial repair following wounding. This study illustrates the involvement of the Notch pathway in airway epithelial wound repair in health and disease, where its dysregulation may contribute to asthma development.

16.
J Cyst Fibros ; 20(1): 97-105, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32684439

RESUMO

BACKGROUND: Aberrant responses by the cystic fibrosis airway epithelium during viral infection may underly the clinical observations. Whether CFTR modulators affect antiviral responses by CF epithelia is presently unknown. We tested the hypothesis that treatment of CF epithelial cells with ivacaftor (Iva) or ivacaftor/lumacaftor (Iva/Lum) would improve control of rhinovirus infection. METHODS: Nineteen CF epithelial cultures (10 homozygous for p.Phe508del as CFTR Class 2, 9 p.Phe508del/p.Gly551Asp as Class 3) were infected with rhinovirus 1B at multiplicity of infection 12 for 24 h. Culture RNA and supernatants were harvested to assess gene and protein expression respectively. RESULTS: RNA-seq analysis comparing rhinovirus infected cultures to control identified 796 and 629 differentially expressed genes for Class 2 and Class 3, respectively. This gene response was highly conserved when cells were treated with CFTR modulators and were predicted to be driven by the same interferon-pathway transcriptional regulators (IFNA, IFNL1, IFNG, IRF7, STAT1). Direct comparisons between treated and untreated infected cultures did not yield any differentially expressed genes for Class 3 and only 68 genes for Class 2. Changes were predominantly related to regulators of lipid metabolism and inflammation, aspects of epithelial biology known to be dysregulated in CF. In addition, CFTR modulators did not affect viral copy number, or levels of pro-inflammatory cytokines produced post-infection. CONCLUSIONS: Though long-term clinical data is not yet available, results presented here suggest that first generation CFTR modulators do not interfere with core airway epithelial responses to rhinovirus infection. Future work should investigate the latest triple modulation therapies.


Assuntos
Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Resfriado Comum/virologia , Fibrose Cística/genética , Quinolonas/farmacologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/virologia , Rhinovirus , Células Cultivadas , Resfriado Comum/complicações , Fibrose Cística/complicações , Combinação de Medicamentos , Humanos , Mucosa Respiratória/citologia
17.
Front Immunol ; 11: 1327, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765492

RESUMO

Early-life viral infections are responsible for pulmonary exacerbations that can contribute to disease progression in young children with cystic fibrosis (CF). The most common respiratory viruses detected in the CF airway are human rhinoviruses (RV), and augmented airway inflammation in CF has been attributed to dysregulated airway epithelial responses although evidence has been conflicting. Here, we exposed airway epithelial cells from children with and without CF to RV in vitro. Using RNA-Seq, we profiled the transcriptomic differences of CF and non-CF airway epithelial cells at baseline and in response to RV. There were only modest differences between CF and non-CF cells at baseline. In response to RV, there were 1,442 and 896 differentially expressed genes in CF and non-CF airway epithelial cells, respectively. The core antiviral responses in CF and non-CF airway epithelial cells were mediated through interferon signaling although type 1 and 3 interferon signaling, when measured, were reduced in CF airway epithelial cells following viral challenge consistent with previous reports. The transcriptional responses in CF airway epithelial cells were more complex than in non-CF airway epithelial cells with diverse over-represented biological pathways, such as cytokine signaling and metabolic and biosynthetic pathways. Network analysis highlighted that the differentially expressed genes of CF airway epithelial cells' transcriptional responses were highly interconnected and formed a more complex network than observed in non-CF airway epithelial cells. We corroborate observations in fully differentiated air-liquid interface (ALI) cultures, identifying genes involved in IL-1 signaling and mucin glycosylation that are only dysregulated in the CF airway epithelial response to RV infection. These data provide novel insights into the CF airway epithelial cells' responses to RV infection and highlight potential pathways that could be targeted to improve antiviral and anti-inflammatory responses in CF.


Assuntos
Brônquios/citologia , Fibrose Cística/imunologia , Células Epiteliais/imunologia , Infecções por Picornaviridae/imunologia , Rhinovirus , Células Cultivadas , Pré-Escolar , Fibrose Cística/genética , Citocinas/imunologia , Células Epiteliais/virologia , Feminino , Humanos , Lactente , Masculino , Infecções por Picornaviridae/genética , Mapas de Interação de Proteínas , RNA-Seq , Transcriptoma
18.
Transplantation ; 104(6): 1166-1176, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31985728

RESUMO

BACKGROUND: Dysregulated airway epithelial repair following injury is a proposed mechanism driving posttransplant bronchiolitis obliterans (BO), and its clinical correlate bronchiolitis obliterans syndrome (BOS). This study compared gene and cellular characteristics of injury and repair in large (LAEC) and small (SAEC) airway epithelial cells of transplant patients. METHODS: Subjects were recruited at the time of routine bronchoscopy posttransplantation and included patients with and without BOS. Airway epithelial cells were obtained from bronchial and bronchiolar brushing performed under radiological guidance from these patients. In addition, bronchial brushings were also obtained from healthy control subjects comprising of adolescents admitted for elective surgery for nonrespiratory-related conditions. Primary cultures were established, monolayers wounded, and repair assessed (±) azithromycin (1 µg/mL). In addition, proliferative capacity as well as markers of injury and dysregulated repair were also assessed. RESULTS: SAEC had a significantly dysregulated repair process postinjury, despite having a higher proliferative capacity than large airway epithelial cells. Addition of azithromycin significantly induced repair in these cells; however, full restitution was not achieved. Expression of several genes associated with epithelial barrier repair (matrix metalloproteinase 7, matrix metalloproteinase 3, the integrins ß6 and ß8, and ß-catenin) were significantly different in epithelial cells obtained from patients with BOS compared to transplant patients without BOS and controls, suggesting an intrinsic defect. CONCLUSIONS: Chronic airway injury and dysregulated repair programs are evident in airway epithelium obtained from patients with BOS, particularly with SAEC. We also show that azithromycin partially mitigates this pathology.


Assuntos
Azitromicina/farmacologia , Bronquiolite Obliterante/prevenção & controle , Células Epiteliais/efeitos dos fármacos , Rejeição de Enxerto/prevenção & controle , Transplante de Pulmão/efeitos adversos , Adolescente , Adulto , Remodelação das Vias Aéreas/efeitos dos fármacos , Aloenxertos/citologia , Aloenxertos/diagnóstico por imagem , Aloenxertos/patologia , Azitromicina/uso terapêutico , Brônquios/citologia , Brônquios/diagnóstico por imagem , Brônquios/patologia , Bronquiolite Obliterante/diagnóstico , Bronquiolite Obliterante/etiologia , Bronquiolite Obliterante/patologia , Broncoscopia , Estudos de Casos e Controles , Células Cultivadas , Criança , Avaliação Pré-Clínica de Medicamentos , Células Epiteliais/patologia , Feminino , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células , Regeneração/efeitos dos fármacos , Transplante Homólogo , Adulto Jovem
19.
JCI Insight ; 5(7)2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32208383

RESUMO

Abnormal wound repair has been observed in the airway epithelium of patients with chronic respiratory diseases, including asthma. Therapies focusing on repairing vulnerable airways, particularly in early life, present a potentially novel treatment strategy. We report defective lower airway epithelial cell repair to strongly associate with common pre-school-aged and school-aged wheezing phenotypes, characterized by aberrant migration patterns and reduced integrin α5ß1 expression. Next generation sequencing identified the PI3K/Akt pathway as the top upstream transcriptional regulator of integrin α5ß1, where Akt activation enhanced repair and integrin α5ß1 expression in primary cultures from children with wheeze. Conversely, inhibition of PI3K/Akt signaling in primary cultures from children without wheeze reduced α5ß1 expression and attenuated repair. Importantly, the FDA-approved drug celecoxib - and its non-COX2-inhibiting analogue, dimethyl-celecoxib - stimulated the PI3K/Akt-integrin α5ß1 axis and restored airway epithelial repair in cells from children with wheeze. When compared with published clinical data sets, the identified transcriptomic signature was also associated with viral-induced wheeze exacerbations highlighting the clinical potential of such therapy. Collectively, these results identify airway epithelial restitution via targeting the PI3K-integrin α5ß1 axis as a potentially novel therapeutic avenue for childhood wheeze and asthma. We propose that the next step in the therapeutic development process should be a proof-of-concept clinical trial, since relevant animal models to test the crucial underlying premise are unavailable.


Assuntos
Asma/metabolismo , Movimento Celular , Mucosa Respiratória/metabolismo , Sons Respiratórios , Transdução de Sinais , Adolescente , Asma/patologia , Linhagem Celular , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Integrina alfa5beta1/metabolismo , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Mucosa Respiratória/patologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-31344807

RESUMO

Indigenous children have much higher rates of ear and lung disease than non-Indigenous children, which may be related to exposure to high levels of geogenic (earth-derived) particulate matter (PM). The aim of this study was to assess the relationship between dust levels and health in Indigenous children in Western Australia (W.A.). Data were from a population-based sample of 1077 Indigenous children living in 66 remote communities of W.A. (>2,000,000 km2), with information on health outcomes derived from carer reports and hospitalisation records. Associations between dust levels and health outcomes were assessed by multivariate logistic regression in a multi-level framework. We assessed the effect of exposure to community sampled PM on epithelial cell (NuLi-1) responses to non-typeable Haemophilus influenzae (NTHi) in vitro. High dust levels were associated with increased odds of hospitalisation for upper (OR 1.77 95% CI [1.02-3.06]) and lower (OR 1.99 95% CI [1.08-3.68]) respiratory tract infections and ear disease (OR 3.06 95% CI [1.20-7.80]). Exposure to PM enhanced NTHi adhesion and invasion of epithelial cells and impaired IL-8 production. Exposure to geogenic PM may be contributing to the poor respiratory health of disadvantaged communities in arid environments where geogenic PM levels are high.


Assuntos
Poluentes Atmosféricos/análise , Otopatias/epidemiologia , Material Particulado/análise , Doenças Respiratórias/epidemiologia , Adolescente , Poluentes Atmosféricos/toxicidade , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Criança , Pré-Escolar , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Haemophilus influenzae , Humanos , Povos Indígenas/estatística & dados numéricos , Lactente , Recém-Nascido , Interleucina-8/metabolismo , Razão de Chances , Material Particulado/toxicidade , Austrália Ocidental/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA