Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Opin Neurol ; 37(4): 369-380, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38804205

RESUMO

PURPOSE OF REVIEW: Human brain parcellation based on functional magnetic resonance imaging (fMRI) plays an essential role in neuroscience research. By segmenting vast and intricate fMRI data into functionally similar units, researchers can better decipher the brain's structure in both healthy and diseased states. This article reviews current methodologies and ideas in this field, while also outlining the obstacles and directions for future research. RECENT FINDINGS: Traditional brain parcellation techniques, which often rely on cytoarchitectonic criteria, overlook the functional and temporal information accessible through fMRI. The adoption of machine learning techniques, notably deep learning, offers the potential to harness both spatial and temporal information for more nuanced brain segmentation. However, the search for a one-size-fits-all solution to brain segmentation is impractical, with the choice between group-level or individual-level models and the intended downstream analysis influencing the optimal parcellation strategy. Additionally, evaluating these models is complicated by our incomplete understanding of brain function and the absence of a definitive "ground truth". SUMMARY: While recent methodological advancements have significantly enhanced our grasp of the brain's spatial and temporal dynamics, challenges persist in advancing fMRI-based spatio-temporal representations. Future efforts will likely focus on refining model evaluation and selection as well as developing methods that offer clear interpretability for clinical usage, thereby facilitating further breakthroughs in our comprehension of the brain.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-37682656

RESUMO

Brain connectivity networks based on functional magnetic resonance imaging (fMRI) have expanded our understanding of brain functions in both healthy and diseased states. However, most current studies construct connectivity networks using averaged regional time courses with the strong assumption that the activities of voxels contained in each brain region are similar, ignoring their possible variations. Additionally, pairwise correlation analysis is often adopted with more attention to positive relationships, while joint interactions at the network level as well as anti-correlations are less investigated. In this paper, to provide a new strategy for regional activity representation and brain connectivity modeling, a novel homogeneous multiset canonical correlation analysis (HMCCA) model is proposed, which enforces sign constraints on the weights of voxels to guarantee homogeneity within each brain region. It is capable of obtaining regional representative signals and constructing covariation and contravariance networks simultaneously, at both group and subject levels. Validations on two sessions of fMRI data verified its reproducibility and reliability when dealing with brain connectivity networks. Further experiments on subjects with and without Parkinson's disease (PD) revealed significant alterations in brain connectivity patterns, which were further associated with clinical scores and demonstrated superior prediction ability, indicating its potential in clinical practice.


Assuntos
Encéfalo , Doença de Parkinson , Humanos , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem
3.
IEEE J Biomed Health Inform ; 26(11): 5641-5652, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35930507

RESUMO

Connectivity-based brain region parcellation from functional magnetic resonance imaging (fMRI) data is complicated by heterogeneity among aged and diseased subjects, particularly when the data are spatially transformed to a common space. Here, we propose a group-guided functional brain region parcellation model capable of obtaining subregions from a target region with consistent connectivity profiles across multiple subjects, even when the fMRI signals are kept in their native spaces. The model is based on a joint constrained canonical correlation analysis (JC-CCA) method that achieves group-guided parcellation while allowing the data dimension of the parcellated regions for each subject to vary. We performed extensive experiments on synthetic and real data to demonstrate the superiority of the proposed model compared to other classical methods. When applied to fMRI data of subjects with and without Parkinson's disease (PD) to estimate the subregions in the Putamen, significant between-group differences were found in the derived subregions and the connectivity patterns. Superior classification and regression results were obtained, demonstrating its potential in clinical practice.


Assuntos
Mapeamento Encefálico , Doença de Parkinson , Humanos , Idoso , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA