Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Transfusion ; 64(5): 893-905, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38400657

RESUMO

BACKGROUND: Fetal and neonatal alloimmune thrombocytopenia (FNAIT) is a condition during pregnancy, which can lead to thrombocytopenia and a bleeding tendency with intracranial hemorrhage (ICH) being the most concerning complication in the fetus or neonate. An incompatibility between human platelet antigen (HPA)-1a accounts for the majority of FNAIT cases. Binding of HPA-1a-specific alloantibodies to their target on fetal platelets and endothelial cells can induce apoptosis of megakaryocytes, disrupt platelet function, and impair angiogenesis. Currently, there is no screening program to identify pregnancies at risk for severe disease. A better understanding of HPA-1a-specific antibody heterogeneity in FNAIT could aid in identifying pathogenic antibody properties linked to severe disease. STUDY DESIGN AND METHODS: This study aimed to isolate HPA-1a-specific B-cells from an HPA-1a-alloimmunized pregnant woman. Using fluorescently labeled HPA-1a-positive platelets, single B-cells were sorted and cultured for 10 days to stimulate antibody production. Subsequently, supernatants were tested for the presence of antibodies by enzyme-linked immunosorbent assay and their reactivity towards HPA-1a-positive platelets. Amplification and sequencing of variable regions allowed the generation of monoclonal antibodies using a HEK-Freestyle-based expression system. RESULTS: Three platelet-specific B-cells were obtained and cloned of which two were specific for HPA-1a, named D- and M-204, while the third was specific for HLA class I, which was named L-204. DISCUSSION: This study outlined an effective method for the isolation of HPA-1a-specific B-cells and the generation of monoclonal antibodies. Further characterization of these antibodies holds promise for better understanding the pathogenic nature of alloantibodies in FNAIT.


Assuntos
Antígenos de Plaquetas Humanas , Isoanticorpos , Trombocitopenia Neonatal Aloimune , Humanos , Antígenos de Plaquetas Humanas/imunologia , Gravidez , Feminino , Trombocitopenia Neonatal Aloimune/imunologia , Isoanticorpos/imunologia , Integrina beta3/imunologia , Linfócitos B/imunologia , Anticorpos Monoclonais/imunologia , Plaquetas/imunologia , Plaquetas/metabolismo , Recém-Nascido
2.
J Immunol ; 205(12): 3491-3499, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33127820

RESUMO

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 infections often cause only mild disease that may evoke relatively low Ab titers compared with patients admitted to hospitals. Generally, total Ab bridging assays combine good sensitivity with high specificity. Therefore, we developed sensitive total Ab bridging assays for detection of SARS-CoV-2 Abs to the receptor-binding domain (RBD) and nucleocapsid protein in addition to conventional isotype-specific assays. Ab kinetics was assessed in PCR-confirmed, hospitalized coronavirus disease 2019 (COVID-19) patients (n = 41) and three populations of patients with COVID-19 symptoms not requiring hospital admission: PCR-confirmed convalescent plasmapheresis donors (n = 182), PCR-confirmed hospital care workers (n = 47), and a group of longitudinally sampled symptomatic individuals highly suspect of COVID-19 (n = 14). In nonhospitalized patients, the Ab response to RBD is weaker but follows similar kinetics, as has been observed in hospitalized patients. Across populations, the RBD bridging assay identified most patients correctly as seropositive. In 11/14 of the COVID-19-suspect cases, seroconversion in the RBD bridging assay could be demonstrated before day 12; nucleocapsid protein Abs emerged less consistently. Furthermore, we demonstrated the feasibility of finger-prick sampling for Ab detection against SARS-CoV-2 using these assays. In conclusion, the developed bridging assays reliably detect SARS-CoV-2 Abs in hospitalized and nonhospitalized patients and are therefore well suited to conduct seroprevalence studies.


Assuntos
Anticorpos Antivirais/imunologia , Formação de Anticorpos , COVID-19/imunologia , Proteínas do Nucleocapsídeo/imunologia , SARS-CoV-2/imunologia , Adulto , COVID-19/diagnóstico , Teste de Ácido Nucleico para COVID-19 , Teste Sorológico para COVID-19 , Convalescença , Feminino , Humanos , Testes Imunológicos , Masculino , Pessoa de Meia-Idade
3.
Eur J Immunol ; 50(12): 1998-2012, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33073359

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the current coronavirus disease 2019 (COVID-19) pandemic. Understanding the immune response that provides specific immunity but may also lead to immunopathology is crucial for the design of potential preventive and therapeutic strategies. Here, we characterized and quantified SARS-CoV-2-specific immune responses in patients with different clinical courses. Compared to individuals with a mild clinical presentation, CD4+ T-cell responses were qualitatively impaired in critically ill patients. Strikingly, however, in these patients the specific IgG antibody response was remarkably strong. Furthermore, in these critically ill patients, a massive influx of circulating T cells into the lungs was observed, overwhelming the local T-cell compartment, and indicative of vascular leakage. The observed disparate T- and B-cell responses could be indicative of a deregulated immune response in critically ill COVID-19 patients.


Assuntos
Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , COVID-19/imunologia , Imunoglobulina G/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Linfócitos B/patologia , Linfócitos T CD4-Positivos/patologia , COVID-19/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença
4.
Aging Cell ; 23(7): e14167, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38616780

RESUMO

Down syndrome (DS) is characterized by lowered immune competence and premature aging. We previously showed decreased antibody response following SARS-CoV-2 vaccination in adults with DS. IgG1 Fc glycosylation patterns are known to affect the effector function of IgG and are associated with aging. Here, we compare total and anti-spike (S) IgG1 glycosylation patterns following SARS-CoV-2 vaccination in DS and healthy controls (HC). Total and anti-Spike IgG1 Fc N-glycan glycoprofiles were measured in non-exposed adults with DS and controls before and after SARS-CoV-2 vaccination by liquid chromatography-mass spectrometry (LC-MS) of Fc glycopeptides. We recruited N = 44 patients and N = 40 controls. We confirmed IgG glycosylation patterns associated with aging in HC and showed premature aging in DS. In DS, we found decreased galactosylation (50.2% vs. 59.0%) and sialylation (6.7% vs. 8.5%) as well as increased fucosylation (97.0% vs. 94.6%) of total IgG. Both cohorts showed similar bisecting GlcNAc of total and anti-S IgG1 with age. In contrast, anti-S IgG1 of DS and HC showed highly comparable glycosylation profiles 28 days post vaccination. The IgG1 glycoprofile in DS exhibits strong premature aging. The combination of an early decrease in IgG1 Fc galactosylation and sialylation and increase in fucosylation is predicted to reduce complement activity and decrease FcγRIII binding and subsequent activation, respectively. The altered glycosylation patterns, combined with decreased antibody concentrations, help us understand the susceptibility to severe infections in DS. The effect of premature aging highlights the need for individuals with DS to receive tailored vaccines and/or vaccination schedules.


Assuntos
Senilidade Prematura , Síndrome de Down , Imunoglobulina G , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Glicosilação , Feminino , Masculino , Senilidade Prematura/metabolismo , Senilidade Prematura/imunologia , Adulto , Pessoa de Meia-Idade , Síndrome de Down/imunologia , Síndrome de Down/metabolismo , COVID-19/imunologia , COVID-19/metabolismo , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Vacinação , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteínas
5.
Biomed Pharmacother ; 175: 116726, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754263

RESUMO

New therapies to treat or prevent viral infections are essential, as recently observed during the COVID-19 pandemic. Here, we propose a therapeutic strategy based on monoclonal antibodies that block the specific interaction between the host receptor Siglec-1/CD169 and gangliosides embedded in the viral envelope. Antibodies are an excellent option for treating infectious diseases based on their high specificity, strong targeting affinity, and relatively low toxicity. Through a process of humanization, we optimized monoclonal antibodies to eliminate sequence liabilities and performed biophysical characterization. We demonstrated that they maintain their ability to block viral entry into myeloid cells. These molecular improvements during the discovery stage are key if we are to maximize efforts to develop new therapeutic strategies. Humanized monoclonal antibodies targeting CD169 provide new opportunities in the treatment of infections caused by ganglioside-containing enveloped viruses, which pose a constant threat to human health. In contrast with current neutralizing antibodies that bind antigens on the infectious particle, our antibodies can prevent several types of enveloped viruses interacting with host cells because they target the host CD169 protein, thus becoming a potential pan-antiviral therapy.


Assuntos
Anticorpos Monoclonais Humanizados , Antivirais , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Humanos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/imunologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Animais , Tratamento Farmacológico da COVID-19 , Internalização do Vírus/efeitos dos fármacos , SARS-CoV-2/imunologia , SARS-CoV-2/efeitos dos fármacos
6.
iScience ; 26(9): 107619, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37670790

RESUMO

IgG antibodies are important mediators of vaccine-induced immunity through complement- and Fc receptor-dependent effector functions. Both are influenced by the composition of the conserved N-linked glycan located in the IgG Fc domain. Here, we compared the anti-Spike (S) IgG1 Fc glycosylation profiles in response to mRNA, adenoviral, and protein-based COVID-19 vaccines by mass spectrometry (MS). All vaccines induced a transient increase of antigen-specific IgG1 Fc galactosylation and sialylation. An initial, transient increase of afucosylated IgG was induced by membrane-encoding S protein formulations. A fucose-sensitive ELISA for antigen-specific IgG (FEASI) exploiting FcγRIIIa affinity for afucosylated IgG was used as an orthogonal method to confirm the LC-MS-based afucosylation readout. Our data suggest that vaccine-induced anti-S IgG glycosylation is dynamic, and although variation is seen between different vaccine platforms and individuals, the evolution of glycosylation patterns display marked overlaps.

7.
EBioMedicine ; 87: 104408, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36529104

RESUMO

BACKGROUND: Afucosylated IgG1 responses have only been found against membrane-embedded epitopes, including anti-S in SARS-CoV-2 infections. These responses, intrinsically protective through enhanced FcγRIIIa binding, can also trigger exacerbated pro-inflammatory responses in severe COVID-19. We investigated if the BNT162b2 SARS-CoV-2 mRNA also induced afucosylated IgG responses. METHODS: Blood from vaccinees during the first vaccination wave was collected. Liquid chromatography-Mass spectrometry (LC-MS) was used to study anti-S IgG1 Fc glycoprofiles. Responsiveness of alveolar-like macrophages to produce proinflammatory cytokines in presence of sera and antigen was tested. Antigen-specific B cells were characterized and glycosyltransferase levels were investigated by Fluorescence-Activated Cell Sorting (FACS). FINDINGS: Initial transient afucosylated anti-S IgG1 responses were found in naive vaccinees, but not in antigen-experienced ones. All vaccinees had increased galactosylated and sialylated anti-S IgG1. Both naive and antigen-experienced vaccinees showed relatively low macrophage activation potential, as expected, due to the low antibody levels for naive individuals with afucosylated IgG1, and low afucosylation levels for antigen-experienced individuals with high levels of anti-S. Afucosylation levels correlated with FUT8 expression in antigen-specific plasma cells in naive individuals. Interestingly, low fucosylation of anti-S IgG1 upon seroconversion correlated with high anti-S IgG levels after the second dose. INTERPRETATION: Here, we show that BNT162b2 mRNA vaccination induces transient afucosylated anti-S IgG1 responses in naive individuals. This observation warrants further studies to elucidate the clinical context in which potent afucosylated responses would be preferred. FUNDING: LSBR1721, 1908; ZonMW10430012010021, 09150161910033, 10430012010008; DFG398859914, 400912066, 390884018; PMI; DOI4-Nr. 3; H2020-MSCA-ITN 721815.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Vacina BNT162 , Imunoglobulina G , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos Antivirais , Vacinação
8.
EBioMedicine ; 78: 103957, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35334306

RESUMO

BACKGROUND: Immunoglobulin G1 (IgG1) effector functions are impacted by the structure of fragment crystallizable (Fc) tail-linked N-glycans. Low fucosylation levels on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein-specific IgG1 has been described as a hallmark of severe coronavirus disease 2019 (COVID-19) and may lead to activation of macrophages via immune complexes thereby promoting inflammatory responses, altogether suggesting involvement of IgG1 Fc glycosylation modulated immune mechanisms in COVID-19. METHODS: In this prospective, observational single center cohort study, IgG1 Fc glycosylation was analyzed by liquid chromatography-mass spectrometry following affinity capturing from serial plasma samples of 159 SARS-CoV-2 infected hospitalized patients. FINDINGS: At baseline close to disease onset, anti-S IgG1 glycosylation was highly skewed when compared to total plasma IgG1. A rapid, general reduction in glycosylation skewing was observed during the disease course. Low anti-S IgG1 galactosylation and sialylation as well as high bisection were early hallmarks of disease severity, whilst high galactosylation and sialylation and low bisection were found in patients with low disease severity. In line with these observations, anti-S IgG1 glycosylation correlated with various inflammatory markers. INTERPRETATION: Association of low galactosylation, sialylation as well as high bisection with disease severity and inflammatory markers suggests that further studies are needed to understand how anti-S IgG1 glycosylation may contribute to disease mechanism and to evaluate its biomarker potential. FUNDING: This project received funding from the European Commission's Horizon2020 research and innovation program for H2020-MSCA-ITN IMforFUTURE, under grant agreement number 721815, and supported by Crowdfunding Wake Up To Corona, organized by the Leiden University Fund.


Assuntos
COVID-19 , Biomarcadores , Estudos de Coortes , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas , Imunoglobulina G , Estudos Prospectivos , SARS-CoV-2
9.
EBioMedicine ; 81: 104109, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35752106

RESUMO

BACKGROUND: Immunoglobulin G (IgG) antibodies serve a crucial immuno-protective function mediated by IgG Fc receptors (FcγR). Absence of fucose on the highly conserved N-linked glycan in the IgG Fc domain strongly enhances IgG binding and activation of myeloid and natural killer (NK) cell FcγRs. Although afucosylated IgG can provide increased protection (malaria and HIV), it also boosts immunopathologies in alloimmune diseases, COVID-19 and dengue fever. Quantifying IgG fucosylation currently requires sophisticated methods such as liquid chromatography-mass spectrometry (LC-MS) and extensive analytical skills reserved to highly specialized laboratories. METHODS: Here, we introduce the Fucose-sensitive Enzyme-linked immunosorbent assay (ELISA) for Antigen-Specific IgG (FEASI), an immunoassay capable of simultaneously quantitating and qualitatively determining IgG responses. FEASI is a two-tier immunoassay; the first assay is used to quantify antigen-specific IgG (IgG ELISA), while the second gives FcγRIIIa binding-dependent readout which is highly sensitive to both the IgG quantity and the IgG Fc fucosylation (FcγR-IgG ELISA). FINDINGS: IgG Fc fucosylation levels, independently determined by LC-MS and FEASI, in COVID-19 responses to the spike (S) antigen, correlated very strongly by simple linear regression (R2=0.93, p < 0.0001). The FEASI method was then used to quantify IgG levels and fucosylation in COVID-19 convalescent plasma which was independently validated by LC-MS. INTERPRETATION: FEASI can be reliably implemented to measure relative and absolute IgG Fc fucosylation and quantify binding of antigen-specific IgG to FcγR in a high-throughput manner accessible to all diagnostic and research laboratories. FUNDING: This work was funded by the Stichting Sanquin Bloedvoorziening (PPOC 19-08 and SQI00041) and ZonMW 10430 01 201 0021.


Assuntos
Fucose , Imunoglobulina G , Receptores de IgG , COVID-19/diagnóstico , COVID-19/terapia , Ensaio de Imunoadsorção Enzimática/métodos , Fucose/química , Fucose/metabolismo , Humanos , Imunização Passiva , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Receptores de IgG/química , Soroterapia para COVID-19
10.
Clin Transl Immunology ; 10(5): e1285, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026115

RESUMO

OBJECTIVES: Characterisation of the human antibody response to SARS-CoV-2 infection is vital for serosurveillance purposes and for treatment options such as transfusion with convalescent plasma or immunoglobulin products derived from convalescent plasma. In this study, we longitudinally and quantitatively analysed antibody responses in RT-PCR-positive SARS-CoV-2 convalescent adults during the first 250 days after onset of symptoms. METHODS: We measured antibody responses to the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein and the nucleocapsid protein in 844 longitudinal samples from 151 RT-PCR-positive SARS-CoV-2 convalescent adults. With a median of 5 (range 2-18) samples per individual, this allowed quantitative analysis of individual longitudinal antibody profiles. Kinetic profiles were analysed by mixed-effects modelling. RESULTS: All donors were seropositive at the first sampling moment, and only one donor seroreverted during follow-up analysis. Anti-RBD IgG and anti-nucleocapsid IgG levels declined with median half-lives of 62 and 59 days, respectively, 2-5 months after symptom onset, and several-fold variation in half-lives of individuals was observed. The rate of decline of antibody levels diminished during extended follow-up, which points towards long-term immunological memory. The magnitude of the anti-RBD IgG response correlated well with neutralisation capacity measured in a classic plaque reduction assay and in an in-house developed competitive assay. CONCLUSION: The result of this study gives valuable insight into the long-term longitudinal response of antibodies to SARS-CoV-2.

11.
Microbiol Spectr ; 9(2): e0073121, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34523985

RESUMO

COVID-19 patients produce circulating and mucosal antibodies. In adults, specific saliva antibodies have been detected. Nonetheless, seroprevalence is routinely investigated, while little attention has been paid to mucosal antibodies. We therefore assessed SARS-CoV-2-specific antibody prevalence in serum and saliva in children in the Netherlands. We assessed SARS-CoV-2 antibody prevalence in serum and saliva of 517 children attending medical services in the Netherlands (irrespective of COVID-19 exposure) from April to October 2020. The prevalence of SARS-CoV-2 spike (S), receptor binding domain (RBD), and nucleocapsid (N)-specific IgG and IgA were evaluated with an exploratory Luminex assay in serum and saliva and with the Wantai SARS-CoV-2 RBD total antibody enzyme-linked immunosorbent assay in serum. Using the Wantai assay, the RBD-specific antibody prevalence in serum was 3.3% (95% confidence interval [CI]. 1.9 to 5.3%). With the Luminex assay, we detected heterogeneity between antibodies for S, RBD, and N antigens, as IgG and IgA prevalence ranged between 3.6 and 4.6% in serum and between 0 and 4.4% in saliva. The Luminex assay also revealed differences between serum and saliva, with SARS-CoV-2-specific IgG present in saliva but not in serum for 1.5 to 2.7% of all children. Using multiple antigen assays, the IgG prevalence for at least two out of three antigens (S, RBD, or N) in serum or saliva can be calculated as 3.8% (95% CI, 2.3 to 5.6%). Our study displays the heterogeneity of the SARS-CoV-2 antibody response in children and emphasizes the additional value of saliva antibody detection and the combined use of different antigens. IMPORTANCE Comprehending humoral immunity to SARS-CoV-2, including in children, is crucial for future public health and vaccine strategies. Others have suggested that mucosal antibody measurement could be an important and more convenient tool to evaluate humoral immunity compared to circulating antibodies. Nonetheless, seroprevalence is routinely investigated, while little attention has been paid to mucosal antibodies. We show the heterogeneity of SARS-CoV-2 antibodies, in terms of both antigen specificity and differences between circulating and mucosal antibodies, emphasizing the additional value of saliva antibody detection next to detection of antibodies in serum.


Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , SARS-CoV-2/imunologia , Saliva/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adolescente , COVID-19/diagnóstico , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunidade Humoral/imunologia , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Masculino , Fosfoproteínas/imunologia , Prevalência , Sensibilidade e Especificidade , Estudos Soroepidemiológicos
12.
Sci Transl Med ; 13(596)2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33979301

RESUMO

Patients diagnosed with coronavirus disease 2019 (COVID-19) become critically ill primarily around the time of activation of the adaptive immune response. Here, we provide evidence that antibodies play a role in the worsening of disease at the time of seroconversion. We show that early-phase severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) spike protein-specific immunoglobulin G (IgG) in serum of critically ill COVID-19 patients induces excessive inflammatory responses by human alveolar macrophages. We identified that this excessive inflammatory response is dependent on two antibody features that are specific for patients with severe COVID-19. First, inflammation is driven by high titers of anti-spike IgG, a hallmark of severe disease. Second, we found that anti-spike IgG from patients with severe COVID-19 is intrinsically more proinflammatory because of different glycosylation, particularly low fucosylation, of the antibody Fc tail. Low fucosylation of anti-spike IgG was normalized in a few weeks after initial infection with SARS-CoV-2, indicating that the increased antibody-dependent inflammation mainly occurs at the time of seroconversion. We identified Fcγ receptor (FcγR) IIa and FcγRIII as the two primary IgG receptors that are responsible for the induction of key COVID-19-associated cytokines such as interleukin-6 and tumor necrosis factor. In addition, we show that anti-spike IgG-activated human macrophages can subsequently break pulmonary endothelial barrier integrity and induce microvascular thrombosis in vitro. Last, we demonstrate that the inflammatory response induced by anti-spike IgG can be specifically counteracted by fostamatinib, an FDA- and EMA-approved therapeutic small-molecule inhibitor of Syk kinase.


Assuntos
Anticorpos Antivirais/química , COVID-19/imunologia , Imunoglobulina G/química , Macrófagos Alveolares/imunologia , Glicosilação , Humanos , Inflamação , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia
13.
Science ; 371(6532)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33361116

RESUMO

Immunoglobulin G (IgG) antibodies are crucial for protection against invading pathogens. A highly conserved N-linked glycan within the IgG-Fc tail, which is essential for IgG function, shows variable composition in humans. Afucosylated IgG variants are already used in anticancer therapeutic antibodies for their increased activity through Fc receptors (FcγRIIIa). Here, we report that afucosylated IgG (approximately 6% of total IgG in humans) are specifically formed against enveloped viruses but generally not against other antigens. This mediates stronger FcγRIIIa responses but also amplifies brewing cytokine storms and immune-mediated pathologies. Critically ill COVID-19 patients, but not those with mild symptoms, had high concentrations of afucosylated IgG antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), amplifying proinflammatory cytokine release and acute phase responses. Thus, antibody glycosylation plays a critical role in immune responses to enveloped viruses, including COVID-19.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , Imunoglobulina G/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Anticorpos Antivirais/sangue , Anticorpos Antivirais/química , COVID-19/fisiopatologia , Células Cultivadas , Estado Terminal , Citomegalovirus/imunologia , Feminino , Fucose/análise , Glicosilação , HIV/imunologia , Vacinas contra Hepatite B/imunologia , Humanos , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/química , Inflamação , Interleucina-6/biossíntese , Interleucina-6/imunologia , Macrófagos/imunologia , Masculino , Pessoa de Meia-Idade , Parvovirus B19 Humano/imunologia , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Adulto Jovem
14.
J Hematol Oncol ; 6: 67, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-24010981

RESUMO

BACKGROUND: Pancreatic Ductal Adenocarcinoma (PDAC) is a highly aggressive malignancy with only a 5% 5-year survival rate. Reliable biomarkers for early detection are still lacking. The goals of this study were (a) to identify early humoral responses in genetically engineered mice (GEM) spontaneously developing PDAC; and (b) to test their diagnostic/predictive value in newly diagnosed PDAC patients and in prediagnostic sera. METHODS AND RESULTS: The serum reactivity of GEM from inception to invasive cancer, and in resectable or advanced human PDAC was tested by two-dimensional electrophoresis Western blot against proteins from murine and human PDAC cell lines, respectively. A common mouse-to-human autoantibody signature, directed against six antigens identified by MALDI-TOF mass spectrometry, was determined. Of the six antigens, Ezrin displayed the highest frequency of autoantibodies in GEM with early disease and in PDAC patients with resectable disease. The diagnostic value of Ezrin-autoantibodies to discriminate PDAC from controls was further shown by ELISA and ROC analyses (P < 0.0001). This observation was confirmed in prediagnostic sera from the EPIC prospective study in patients who eventually developed PDAC (with a mean time lag of 61.2 months between blood drawing and PDAC diagnosis). A combination of Ezrin-autoantibodies with CA19.9 serum levels and phosphorylated α-Enolase autoantibodies showed an overall diagnostic accuracy of 0.96 ± 0.02. CONCLUSIONS: Autoantibodies against Ezrin are induced early in PDAC and their combination with other serological markers may provide a predictive and diagnostic signature.


Assuntos
Autoanticorpos/imunologia , Carcinoma Ductal Pancreático/imunologia , Proteínas do Citoesqueleto/imunologia , Neoplasias Pancreáticas/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Autoanticorpos/sangue , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/diagnóstico , Estudos Transversais , Proteínas do Citoesqueleto/sangue , Modelos Animais de Doenças , Feminino , Engenharia Genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/diagnóstico , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA